

MSc in Computer Science 2020-21

Project Dissertation

Project Dissertation title: Cheap Talk Discovery and Utilization in Multi-Agent
Reinforcement Learning

Term and year of submission: Trinity Term 2021

Candidate Number: 1049264

Word Count: 19034

Abstract

In recent years, we have witnessed numerous successes in the field of Rein-

forcement Learning (RL) in tackling sequential decision-making problems,

such as playing the Game of Go, autonomous driving, and robotics con-

trol. The advancement was catalyzed by the use of deep neural networks

as function approximators. Most of these early successes assumed the

single-agent setting, in which an agent learns the optimal behavior in an

environment to maximize rewards. As the field progresses to solve more

difficult problems, the domain of cooperative Multi-Agent Reinforcement

Learning (MARL) has regained growing popularity given its resemblance

to how human agents solve problems in a communicative and collabora-

tive manner. These problems are significantly harder to solve given the

more nonstationary dynamics. Precisely, MARL tries to tackle sequential

decision-making problems of multiple agents that act in the same envi-

ronment toward solving a common goal.

One of the key challenges in MARL is to develop agents that can com-

municate with each other efficiently. Most existing approaches tackle this

task by enabling agents to send either discrete or continuous messages

to each other through free communication channels, commonly known as

“cheap talk channels”. The knowledge of these channels’ existence among

agents allows a variety of methods to be employed to exploit the channels

in learning how to communicate.

In this project, we lift the requirement for cheap talk channels to be known

by the agents apriori. In other words, these channels have to be discov-

ered by the agents within the environment before learning how to use

them. Hence, the problem we tackle can be broken down into two main

parts, namely Cheap Talk Discovery and Cheap Talk Utilization. By com-

bining some of the recent methods like Off-Belief Learning and Differen-

tiable Inter-Agent Learning, with our ideas based on mutual information

maximization, we propose methods to effectively perform discovery and

utilization and examine them in our custom environments. We report

promising results based on our proposed methods that can discover and

utilize communication channels effectively while all existing baselines fail

to solve such tasks.

3

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 5

1.3 Project Scope . 5

1.4 Thesis Overview . 5

2 Background 7

2.1 Markov Decision Process . 7

2.2 Reinforcement Learning . 8

2.2.1 Fundamentals . 9

2.2.2 Tabular Reinforcement Learning 11

2.2.3 Reinforcement Learning with Function Approximation 14

2.3 Partially Observable Markov Decision Process 17

2.4 Reinforcement Learning in Handling Partial Observability 18

2.5 Decentralized Partially Observable Markov Decision Process 19

2.6 Multi-Agent Reinforcement Learning 21

2.6.1 Independent Q-Learning . 22

2.6.2 Off-Belief Learning . 23

2.6.3 Differentiable Inter-Agent Learning 25

2.7 Information Theory . 26

2.7.1 Entropy . 27

2.7.2 Conditional entropy . 27

2.7.3 Mutual information . 27

3 Related Work 28

3.1 MARL algorithms for Dec-POMDPs 28

3.2 Mutual Information in Reinforcement Learning 29

i

3.3 Communication Protocol Learning in Multi-Agent Reinforcement Learn-

ing . 31

4 Methodology 33

4.1 Problem Formulation . 34

4.2 Cheap Talk Discovery . 36

4.2.1 Off-Belief Learning . 36

4.2.1.1 From Learned Belief to Exact Belief 36

4.2.1.2 Why Off-Belief Learning? 37

4.2.2 Mutual Information Maximization 38

4.2.2.1 Mutual Information Reward 38

4.2.2.2 Mutual Information Loss 40

4.3 Cheap Talk Utilization . 41

4.3.1 Differentiable Inter-Agent Learning with Experience Replay . 41

4.4 Putting It All Together . 42

5 Experiments and Results 45

5.1 Experimental Setup . 45

5.1.1 Environment Design . 45

5.1.2 Network Structure and Training 48

5.2 Results . 48

5.2.1 Cheap Talk Discovery . 49

5.2.1.1 Sanity check . 50

5.2.1.2 Time step to cheap talk channel 51

5.2.1.3 Policies at cheap talk channel 52

5.2.1.4 Can the agent discover the best cheap talk channel? 53

5.2.2 Cheap Talk Utilization . 57

5.2.3 Performance based on running task reward 57

6 Conclusion 59

6.1 Summary . 59

6.2 Future Work . 60

6.3 Critical Evaluation . 62

6.4 Relation to Materials Studied in the MSc Program 62

6.5 Personal Developments and Challenges 63

Bibliography 65

ii

A Appendix 73

A.1 Deep Neural Networks . 73

A.1.1 Perceptron . 73

A.1.2 Multilayer perceptron (MLP) 75

A.1.3 Training a neural network . 77

A.1.4 Recurrent neural network . 79

A.2 Hyperparameters Setting . 81

A.2.1 Common parameters . 82

A.2.2 Method-specific parameters 82

A.3 Results Figures without Smoothing 83

iii

List of Figures

1.1 Visual illustration of the three learning stages based on the phone

booth maze environment . 4

2.1 Learning loop of reinforcement learning on a high-level, taken from [66] 9

2.2 Generalized Policy Iteration, taken from [66] 12

2.3 Deep Q-network architecture, taken from [38] 14

2.4 Architectural differences between DQN and Dueling DQN, taken from

[71] . 16

2.5 The architecture of DRQN, taken from [17] 19

2.6 Schematic representation of a Dec-POMDP, taken from [45]. At every

time step, each agent takes an action based on its own observation . . 20

2.7 Learning rule differences between IQL and LB-OBL, taken from [21] . 25

2.8 How gradients flow in DIAL, taken from [11] 26

4.1 Comparative overview of our proposed method with a typical MARL

method. Task learning here refers to the learning of the main task. . 33

4.2 Heatmap illustration of how the sender’s belief model in the Phone

Booth Maze environment evolves over time 37

4.3 How gradients flow through our proposed architecture, with reference

to [11] . 42

5.1 Visual illustration of an instance of the Phone Booth Maze environment 46

5.2 Mutual information heatmaps of the sender’s room, based on two dif-

ferent configurations of our environment 47

5.3 Baselines’ performance on cheap talk discovery, IR stands for Interme-

diate Reward. See Appendix A.11 for the same plot without smoothing 50

5.4 Baselines’ and our proposed approaches’ performance on cheap talk

discovery, MI stands for Mutual Information. See Appendix A.11 for

the same plot without smoothing . 51

iv

5.5 Different algorithms’ sender policy when both sender and the receiver

are at the functional phone booth. This shows our proposed methods

in learning a more grounded policy, preferring communicative actions

over environmental actions that keep the sender in the booth 52

5.6 Visual illustration of an instance of the Phone Booth Maze environment

with multiple functional phone booths used in experiments in this section. 54

5.7 Bar plot of booth visits of each phone booth for different algorithms.

The noise factor for the noisy booth is 0.5. 55

5.8 Bar plot of booth visits of each phone booth for different algorithms.

The noise factor for the noisy booth is 0.3. 56

5.9 Bar plot of booth visits of each phone booth for different algorithms.

The noise factor for the noisy booth is 0.1. 56

5.10 Baselines’ and our proposed methods’ performance on the Phone Booth

Maze environment . 58

A.1 A diagram of a perceptron . 73

A.2 Examples of activation functions taken from [4] 74

A.3 Example of a perceptron being a classifier, taken from [41] 75

A.4 Diagram of a multilayer perceptron 76

A.5 Example of an MLP being a non-linear classifier, taken from [22]. A

and B are class samples while X denotes non-class samples 77

A.6 Backpropagation through one layer. Blue arrows, red arrows, and green

arrows are forward pass, backpropagation, and update respectively . . 78

A.7 Visual illustration of an RNN and its unrolled version 80

A.8 Graphical illustration of an LSTM cell taken from [44] 81

A.9 Hyperparameter sweep results using IQL, the labels on the legend

are named based on the ”method decimals target network update fre-

quency” format . 82

A.10 Baselines’ performance on cheap talk discovery without standard errors

and smoothing, IR stands for Intermediate Reward. Corresponding

section: 5.2.1.1 . 83

A.11 Baselines’ performance on cheap talk discovery with standard errors

and without smoothing, IR stands for Intermediate Reward. Corre-

sponding section: 5.2.1.1 . 84

v

A.12 Baselines’ and our proposed approaches’ performance on cheap talk

discovery without standard errors and smoothing, MI stands for Mu-

tual Information. Corresponding section: 5.2.1.2 84

A.13 Baselines’ and our proposed approaches’ performance on cheap talk

discovery with standard errors and without smoothing, MI stands for

Mutual Information. Corresponding section: 5.2.1.2 85

vi

Chapter 1

Introduction

Reinforcement learning (RL) is a crucial field in machine learning that has advanced

a lot along with the success of deep learning [59, 15]. Being a paradigm to solve

sequential decision-making tasks, it shows promise in pushing machine learning from

solely offering actionable data to offering actionable decisions, leading to a greater

level of automation. In short, the RL paradigm trains agents that interact with the

environment to collect experience. The agents learn from the experience to maxi-

mize their respective utility functions. Details will be provided in the next chapter.

By using deep neural networks as its function approximators, deep RL (DRL) has

made rapid progress in tackling complex tasks like playing Go [59] and performing

autonomous driving [57]. Within the realm of real-world applications, it has demon-

strated promising solutions to tasks including computer chip design, cooling system

control in data centres, and personalized sepsis treatment policy [36, 31, 50].

In this thesis, we focus on multi-agent reinforcement learning (MARL), a subfield

of RL. MARL tries to tackle sequential decision-making problems of multiple agents

that act in the same environment. Each agent aims to maximize its own rewards by

interacting with the environment and other agents [5]. Depending on the environment,

the rewards can be shared among agents in a cooperative, competitive, or mixed

setting. With advancements in DRL, more difficult problems can be tackled, giving

rise to MARL’s growing popularity as it resembles that of how human agents solve

problems in a communicative and collaborative manner. Many real-life problems

can be reframed in the MARL setting. Having agents that can work together to

tackle tasks effectively would bring promise in applications over a variety of domains,

including robotics, distributed control, telecommunications, and economics [5]. They

include areas like large-scale fleet management and energy-sharing optimization [43].

Effective communication is essential for successful and effective multi-agent sys-

tems. Communicating the right information at the right time and the right place

1

would facilitate efficient sharing of information to achieve a certain task quicker. In

some cases, communication itself is required for task completion. In the MARL set-

ting, communication is often provided as persistent channels (also known as cheap

talk channels) between agents to send messages and the agents have to learn what to

send by forming an effective protocol. However, existing work assumes agents’ knowl-

edge on these channels, sometimes including their properties like channel capacity and

noise level, which is arguably something that should be learned by the agents for the

sake of effective adaptation when we envision agents learning in a changing and open

environment. At the same time, in many problems, the domain knowledge in assum-

ing cheap talk channels’ existence does not always hold. Hence, the main purpose

of this thesis is to take away these assumptions on cheap talk channels. In other

words, agents have to learn to discover these channels before they can learn how to

use them. We formulate this problem into two sequential steps: cheap talk discovery

and cheap talk utilization, and justify how this breakdown offers an opportunity to

tackle such a difficult exploration problem. We develop a custom environment to

benchmark MARL algorithms in tackling this problem. Then, we propose a novel ap-

proach based on information theory, combining with some of the latest advancements

in MARL, to tackle the task. Through quantitative analysis of variants of our method

in our custom environments, we offer insights into how our novel problem formulation

and proposed approach can potentially solve this formidable problem in its entirety

while existing work cannot, by first discovering cheap talk channels and subsequently

learning how to use them. We further highlight future steps to strengthen our results

and the limitations of this investigation.

1.1 Motivation

As discussed above, effective communication among agents is the key to success for a

multi-agent system. Particularly, in many cases, the capability of sharing information

among agents is essential to completing a task when agents have different levels of

accessibility to different information. Being able to exchange information can also po-

tentially bring about better policies when agents can acquire information from other

agents without having to acquire all information by themselves. The importance of

effective communication is even more prominent in the partially observably setting

where no agents have full visibility of the environment. Here, we mainly focus on this

setting as it has a greater resemblance to real-life problems. By effectively communi-

2

cating with each other through sending messages, agents would be able to interact,

coordinate and negotiate successfully.

Prior work can only exploit cheap talk channels if their existence and capacity is

known apriori, e.g. as part of domain-specific privileged information. In addition,

prior work largely assumes that these cheap talk channels are persistent, i.e. that

agents can access cheap talk channels at every time step (or at their respective turn).

To the best of our knowledge, this work is the first to do away with both these

assumptions through proposing and evaluating a novel method and framework for

cheap talk discovery and utilization during the learning process. In more specific

terms, without this assumption, these channels can only be used within a particular

set of states. One can think of these states as “phone booths” in an environment

that allows communication. Agents have to first find and enter a phone booth before

they can “call” agents that are situated in other phone booths. Once in a connected

phone booth, agents can then call other agents to send their messages. “Calls” or

messages can only be received if an agent is in a connected phone booth. These

“Calls” or messages can be unidirectional, bidirectional or even multi-directional.

Here, we assume the unidirectional case in which a “call” or a message has a sender

and a receiver, but our formulation and methods can easily scale to the other cases

too.

We believe this is a natural subsequent question to ask in building effective and

communicative agents after we have agents that can learn how to communicate rea-

sonably well. One can think of real-life scenarios in which we would expect our agents

to know where to communicate effectively. For instance, a fleet of drones going on

a search and rescue mission in a remote area would have varying signal strength for

communication within the area. They would need to know where to position them-

selves to communicate messages successfully. Another example could be a group of

robots within an assembly plant of giant machinery. For maximal efficiency, they

need to get regular updates on each other’s progress and potentially exchange im-

portant parts to complete the task. This would require them to meet in a particular

location to communicate, which is ideally something to be learned by the agent, as

these locations should change flexibly for better efficiency based on factors like their

respective current locations.

Besides the potential applications in solving this problem, it is also a difficult

problem that covers some of the challenging open questions in MARL, which are the

credit assignment problem and the combinatorial nature of MARL [25]. To illustrate

the difficulty, here we use our custom environment where we conduct our study as

3

Figure 1.1: Visual illustration of the three learning stages based on the phone booth
maze environment

an example, the phone booth maze. In this environment, we have two agents, a

sender and a receiver, which are placed into two separate rooms. The goal is for

the receiver to escape from the correct exits out of the two possible exits. Only

the sender knows which one is the correct exit and the only way for the sender to

communicate this information to the receiver is to have both of them going to their

respective functional phone booths. This essentially leads to three required learning

paths to solve the task. Firstly, they have to learn to get to the booth. Then,

the sender has to learn to form a protocol by sending a particular message for a

particular correct exit. Finally, there is a post-discovery exploration stage where

the receiver has to learn to interpret the sender’s protocol by trying out the exits.

This makes credit assignment, which refers to the correct attribution of consequences

(rewards) to actions, particularly difficult. Because communicative actions do not

have an immediate effect on rewards or other agents’ observations, meaning it takes

a lot more steps for any consequence to manifest. Thus, it would be hard to reach

the optimal policy given the difficulty to assign long-term credits. The difficulty is

further compounded if rewards are sparse and delayed, which is often the case in many

MARL environments. Figure 1.1 provides a visual illustration of these three needed

learning stages in the phone booth maze environment. Regarding the combinatorial

nature of MARL, it refers to the exponential increase in the size of solution space as

the number of agents increases, as the joint action space is often considered. This

4

leads to great difficulty in learning the correct solution, which is further exacerbated

when communicative actions are also considered. These properties make the problem

a very challenging and well-motivated one to solve.

1.2 Contributions

The contributions of this thesis are

(i) A clear formulation of the cheap talk discovery and utilization problem

(ii) A custom and configurable environment to benchmark MARL algorithms in

solving cheap talk discovery and utilization

(iii) An approach to solve the cheap talk discovery and utilization problem based on

information theory and recent advances in MARL including Off-Belief Learning

(OBL) [21] and Differentiable Inter-Agent Learning [11].

(iv) A systematic and quantitative evaluation of the proposed approach and other

MARL baselines in solving the problem

(v) A variety of ablation studies to understand various aspects of the problem

1.3 Project Scope

Given that the project addresses a problem that has not been well investigated before,

a significant portion of the thesis work went into designing and implementing a proper

environment so that any methods can be evaluated properly and fairly. More impor-

tantly, as the problem is essentially an encapsulation of a few hard problems, existing

methods are found to be surprisingly ineffective in solving our custom GridWorld

environment. Hence, we believe a tractable environment with a clean problem de-

scription would allow us to isolate the causes of issues and conduct extensive analysis

more efficiently.

1.4 Thesis Overview

The goal of this project is to formulate the cheap talk discovery and utilization prob-

lem, provide a configurable environment to evaluate different algorithms, and propose

a promising approach to solve this problem, as well as offer a detailed and systematic

5

analysis of our results with clear directions for future extensions. The structure is as

follows:

• Chapter 2 - Background lays the theoretical foundations employed in this thesis.

It starts with covering the theoretical background of RL and MARL. Then, it

goes over relevant pieces of information theory that are used in our proposed

method. The level of detail in this chapter should allow readers to assess and

understand our contribution in subsequent chapters.

• Chapter 3 - Related Work presents previous work that has attempted to solve

problems similar to our problem or proposed approaches based on ideas that

are similar to our proposed approach.

• Chapter 4 - Methodology defines our novel problem formulation - the cheap talk

discovery and utilization problem and describes our novel proposed approach

in tackling the problem. It provides all mathematical derivations, algorithmic

details, and justifications of our approach in order to train such a model.

• Chapter 5 - Experiments and Results outlines the experimental setup and im-

plementation details of the baselines we use and our proposed approach. It

further provides an extensive quantitative evaluation of our results in solving

the cheap talk discovery and utilization problem.

• Chapter 6 - Conclusion provides a summary of the contributions and results of

this thesis, as well as future directions that are made possible by our work. It

ends with summaries and a personal evaluation of the journey in completing

this thesis including its challenges.

6

Chapter 2

Background

This section assumes the basic knowledge of deep neural networks and recurrent

neural networks which are used in this work. Please refer to the appendix A.1 for an

extensive discussion on these components.

2.1 Markov Decision Process

Markov Decision Process (MDP) is a formalism for decision-making processes. A

MDP models a decision-making agent taking actions in its environment over a se-

quence of discrete time steps t = 1, 2, 3, ... [66]. It has the Markov Property which

holds if:

P(st+1|st, at) = P(st+1|st, at, ..., s0, a0) (2.1)

P(rt|st, at) = P(rt|st, at, ..., s0, a0) (2.2)

This means, at each time step ti, the transition from st to st+1 can be conditioned only

on the current state, without the entire history of previous states. In other words, st

serves a sufficient summary of the past. Based on [12], a MDP can then be defined

as:

Definition 2.1. A MDP is a 5-tuple (S,A, T, r, γ) where:

S: state space

A: action space

T : S × A× S → [0, 1], is the transition function of the environment

r: S × A← R, a reward function from the environment

7

γ: discount rate

At each time step ti, interaction between the agent and its environment is character-

ized by a MDP. Given the current state si, the agent takes a action a ∈ A. Then, the

environment emits a numerical reward r(si, a) to the agent and transitions to a new

state si+1 based on the transition function T (si, a, si+1).

With the agent interacting with the environment, we get a sequence of states, actions,

and rewards. The sequence is commonly referred as a trajectory τ in the form of:

τ = si, ai, ri+1, si+1, ai+1, ri+2,st (2.3)

where si ∈ S, ai ∈ A and st is the terminal state. An environment can either be

episodic or continuing [66]. In the latter case, a terminal state does not exist, so

the environment never terminates. In this work, we only consider environments that

are episodic in which a trajectory naturally terminates as an episode. Most RL

benchmarks are framed as episodic problems like the game of Go. Nonetheless, we

expect our proposed approaches to work naturally with continuing environments too,

as they do not depend on having terminal states.

2.2 Reinforcement Learning

Reinforcement learning (RL) is a subfield of machine learning that focuses on learning

to complete a task through interactions, or learning what to do by mapping situa-

tions to actions by maximizing a numerical reward signal [66]. In other words, RL

algorithms try to learn how to make decisions, with a specific focus on solving prob-

lems that can be modelled as MDPs. It is inspired by the field of psychology when

observing how animals learn through trial and error [52]. In this case, unlike super-

vised learning, the model does not have access to the “action labels”. Precisely, the

reinforcement learning setting assumes an agent which interacts with an environment

over a period of time by taking actions. The goal is to maximize a scalar reward

signal provided by the environment by learning what to do. To do so, the agent has

to learn to map what it observes in the environment - state to an action that would

maximize the reward signal. The mapping from state to action is often known as

the agent’s behavior policy [66]. Figure 2.1 illustrates the high-level learning loop of

reinforcement learning.

This different mode of learning poses quite different, and sometimes unique challenges.

One classic challenge is the exploitation/exploration dilemma. To discover actions

8

Figure 2.1: Learning loop of reinforcement learning on a high-level, taken from [66]

that lead to positive rewards, the agent has to explore by taking new actions in new

scenarios. At the same time, to get more rewards, the agent has to exploit by taking

actions that were shown to be effective in getting rewards. The dilemma is that neither

can be pursued exclusively without failing the task [66]. There are also challenges

regarding the reward signal itself. The rewards provided by the environment can be

sparse and delayed, leading to the credit assignment problem in which the agent has

to learn and assign credits to actions that bring rewards [66]. In practice, the design

of reward functions is also difficult as it is not simple to engineer reward functions that

can lead to desired behavior without misalignment, especially in more complicated

tasks. Last but not least, issues like catastrophic forgetting and instability arise

when RL algorithms are used with function approximators like deep neural networks,

given that most foundational RL algorithms were designed to work in an online and

non-independent-and-identically-distributed (non-iid) manner [6].

2.2.1 Fundamentals

To begin with, a policy π determines how an agent selects an action [12]. It can

either be deterministic or stochastic, which we consider the latter. Formally, a policy

is defined as:

Definition 2.2. A policy π can be either deterministic or stochastic where:

A deterministic policy π : S → A: a function that maps each state to a single

action [66]

A stochastic policy π : S × A → [0, 1]: a function that maps a state si and an

action ai to the probability of ai being taken given the current state is si [66]

9

Policies can also be classified as stationary or nonstationary [12]. If a policy is nonsta-

tionary, even if a pair of state-action pairs are the same, the agent might not take the

same action as the policy is conditioned on the time step. In this work, we consider

stochastic and stationary policies exclusively.

Maximizing expected (discounted) returns is the goal of RL agents, so it plays

a key role when designing RL algorithms. Let M = (S,A, T, r, γ) be a MDP. The

discounted return Gt at time step t is expressed as:

Gt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
k=0

γkrt+k+1 (2.4)

where it corresponds to the cumulative reward attained from time step t onward.

Based on equation 2.4, the expected return is expressed as follows:

Definition 2.3. The expected return for a policy π at time step t is defined as

Jπt = E[Gt] = E

[
∞∑
k=0

γkrt+k+1

]
= E

[
∞∑
k=0

γkrt+k+1|st = s, π

]
(2.5)

where the expectation is taken over the distribution of trajectories τ generated by

the policy π and the transition function T [12]. Being the discounted factor between

0 and 1, γ discounts future rewards, determining the extent that immediate rewards

are preferred over future rewards. We note that having γ < 1 provides guarantees for

an infinite sequence to converge [12]. But given that we only focus on the episodic

setting, discounting is not strictly necessary for convergence and can be set to 1.

Consequently, the optimal policy π∗ is the policy that maximizes the expected return

[66], in the form of:

π∗ = arg max
π

Jπ (2.6)

A value function is one of the most important components in many RL algorithms

to learn based on the expected return. It gives you the value of a state or a state-

action pair, which is the expected return the agent would get starting from that state

or state-action pair and act according to a particular policy thereafter [66]. The value

function and action-value function corresponds to functions that give the value of a

state and state-action pair respectively. They are defined as follows:

Definition 2.4. The value function of a MDP is a function V π : S → R that gives the

expected return given the current state s with all the future actions picked according

10

to the policy π:

V π(s) = E

[
∞∑
k=0

γkrt+k|st = s, π

]
(2.7)

Definition 2.5. The action-value function of a MDP is a function Qπ : S × A → R

that gives the expected return given the current state s and the action selected a with

all the future actions picked according to the policy π:

Qπ(s, a) = E

[
∞∑
k=0

γkrt+k|st = s, at = a, π

]
(2.8)

The optimal value function and action-value function can be defined similarly

except the subsequent actions are selected according to the optimal policy π∗:

Definition 2.6. The value function of a MDP is a function V π : S → R that gives the

expected return given the current state s with all the future actions picked according

to the policy π:

V ∗(s) = max
π

E

[
∞∑
k=0

γkrt+k|st = s, π

]
(2.9)

Definition 2.7. The action-value function of a MDP is a function Qπ : S × A → R

that gives the expected return given the current state s and the action selected a with

all the future actions picked according to the policy π:

Q∗(s, a) = max
π

E

[
∞∑
k=0

γkrt+k|st = s, at = a, π

]
(2.10)

Another important value function is the advantage function which outputs the differ-

ence between the expected return of taking a as the first action or when the action

is selected from π. It is defined as:

Definition 2.8. The advantage function is a function Aπ : S × A→ R:

Aπ(s, a) = Qπ(s, a)− V π(s) (2.11)

2.2.2 Tabular Reinforcement Learning

This section gives an overview of one of the most widely used RL algorithms to

learn an action-value function, which is the base algorithm used in this work. In the

tabular setting, action-value functions are represented as lookup tables. For the sake

of conciseness, RL algorithms like dynamic programming (DP), Monte Carlo (MC)

methods, and policy gradients methods will not be covered. However, we note that our

11

conceptual contributions like our novel problem formulation and proposed methods

based on information theory are algorithm-independent and should generalize across

any algorithms used.

Figure 2.2: Generalized Policy Iteration, taken from [66]

Most, if not all, RL algorithms fall under the paradigm of generalized policy iteration

(GPI), which consists of two simultaneous and interacting processes, namely, policy

evaluation and policy improvement [66]. Policy evaluation computes the value func-

tion of the current policy while policy improvement updates the policy to be greedy

with respect to the current value function to improve it. Figure 2.2 depicts the two

interacting processes in GPI.

Q-learning is a control algorithm based on Temporal Difference (TD) learning. TD

methods learn based on a technique called bootstrapping, which computes estimates

based on previous estimates [65]. In policy evaluation, TD methods update by sam-

pling one-step rewards and bootstrapping the current value function estimate instead

of using the complete episode returns used in MC methods. To learn a value function

V (st) using TD learning, the update can be expressed as:

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)] (2.12)

where:

α: learning rate

rt+1 + γV (st+1)− V (st): TD error [66]

12

TD error is the difference between the current estimate and the updated estimate

using the one-step reward from the environment. For Q-learning, its update step is

written as:

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a
Q(st+1, a)−Q(st, at)] (2.13)

Q-learning is an off-policy learning algorithm as the maximization operation used

when computing the new estimate uses an action that is not necessarily from the

behavior policy, estimating the optimal state-action value function directly. It is

also worth noting that the approach fits with the GPI paradigm with the policy

improvement step happening implicitly in maximization operation.

TD approaches have several advantages when compared with methods like DP and

MC approaches. It does not require models of the environment, unlike DP. It also

converges faster than MC methods because updates are performed in an online and

fully-incremental fashion. Please see [66] for more detailed comparisons. However,

approaches like Q-learning do suffer from the maximization bias as the maximization

operation tend to bias towards overestimated values [66]. With reference to [66],

pseudocode for Q-learning in the tabular setting is provided below.

Algorithm 1: Q-learning pseudocode

1 Hyperparameters: α ∈ (0, 1], small ε > 0
2 Initialize Q(s, a)∀s ∈ S, a ∈ A, with terminal state sterminal having

Q(sterminal, ·) = 0
3 for e = 1, Max Episode do
4 Initialize s
5 while s 6= sterminal do
6 select a from s based on policy derived from Q, e.g. ε-greedy policy
7 take action a to observe reward r and next state s′

8 Q(s, a)← Q(s, a) + α[r + γmaxaQ(s′, a)−Q(s, a)]
9 s = s′

Note that ε-greedy policy here is a common approach to deal with the exploration-

exploitation dilemma in RL. Precisely, at each time step, there is a probability ε that

the agent would take a random action. Over the years, many different exploration

policies have been proposed to better handle this dilemma, which is beyond the scope

of this work [2, 35, 68].

13

2.2.3 Reinforcement Learning with Function Approximation

Tabular RL solutions like tabular Q-learning discussed above can only handle MDPs

with finite and discrete state and action spaces. However, in most complex problems

of interest, the state space and action space are often combinatorially huge or even

continuous. Thus, tabular methods would face the issue of impossible memory re-

quirements and the impossibility of visiting every state sufficiently. Generalization is

needed across states that are similar to each other [66].

To obtain such generalization and handle problems with combinatorially huge

problem spaces, it has become common to use a function approximator to estimate

the action-value function - Q(s, a; θ) ≈ Q∗(s, a). In the case of deep reinforcement

learning, deep neural networks are used as non-linear function approximators to the

value functions with θ being the weights in the neural networks.

Figure 2.3: Deep Q-network architecture, taken from [38]

Deep Q-network (DQN) is a seminal work by [37] that popularises the use of neural

networks as function approximators by showing their power in training powerful RL

agents to perform human tasks like playing video games. The Q-network’s last layer

outputs the action-value for each action with a state as input. See figure 2.3 for a

visual depiction. The Q-network is learned by minimizing a sequence of loss functions

Li(θi) that is different for each iteration i, which they are expressed as:

Li(θi) = Es,a∼ρ(·),s′∼ξ
[
((r + γmax

a′
Q(s′, a′; θi−1))−Q(s, a; θ))2

]
(2.14)

14

where ρ(s, a) is the behaviour distribution, a probability distribution over sequences

of states s and actions a and ξ is the distribution for s′ based on the emulator or

the environment. The weights in the network can then be updated using SGD by

differentiating the loss function with respect to the weights, which would give us:

∇θiLi(θi) = Es,a∼ρ(·),s′∼ξ [(yi −Q(s, a; θ))∇θiQ(s, a; θi)] (2.15)

where yi = (r + γmaxa′ Q(s′, a′; θi−1)).

Two additional innovations were introduced in this work that are significantly

responsible for the model’s success, namely, experience replay and a target network.

Experience replay is a memory buffer that stores an agent’s experiences at each time

step as a transition tuple et = (st, at, rt, st+1) [33] into a dataset D = e1, e2...eN .

In each iteration, a minibatch of experience is sampled randomly from the buffer to

perform a deep Q-learning update. By doing so, it alleviates the issues of correlated

data and nonstationary distributions, smoothing the training distribution over many

past behaviours [37]. For the target network, it is a separate neural network to the

Q-network that copies the Q-network’s weight periodically [38]. It was experimentally

shown to offer more stability during training by reducing correlations to the target.

Algorithm 2 shows the pseudocode for Deep Q-learning, in courtesy of [38].

Algorithm 2: Deep Q-learning pseudocode

1 Initialize replay memory D with capacity N
2 Initialize action value function Q with random weights θ

3 Initialize target action value function Q̂ with random weights θ− = θ
4 for e = 1, Max Episode do
5 Initialize s
6 while s 6= sterminal do
7 Select a from s based on policy derived from Q, e.g. ε-greedy policy
8 Take action a to observe reward r and next state s′

9 Store the transition into D
10 Sample random minimatch of transitions from D
11 Set the targets yi for the sampled data:{

ri if the episode terminates at this time step

ri + γmaxa′ Q̂(si+1, a
′; θi−1) otherwise

12 Perform a gradient descent step on (yi −Q(s, a; θi−1))
2 with respect to

the network weights θ
13 Every C steps, set Q̂ = Q

15

Since the seminal work of DQN, many new algorithms and improvements have

been proposed. Two relevant ones are prioritized experience replay and Dueling

DQN. Prioritized experience replay is an intuitive modification to the experience

replay, which prioritizes transitions with greater learning error so they are sampled

more frequently [54]. It outperforms DQN by a significant margin. For dueling

DQN, it proposes a dueling architecture that explicitly separates the representation

of state values and state-action values into two separate heads of neural networks

with a shared backbone [71]. The intuition is to allow the agent to learn which states

are useful without directly learning the effect of each action for each state, which is

informative in places where actions do not influence the environment in any relevant

way. The action-value function is computed as follows:

Figure 2.4: Architectural differences between DQN and Dueling DQN, taken from
[71]

Q(s, a) = V (s) + A(s, a) (2.16)

The architecture showed superior performance in the Atari-2600 benchmarks. Figure

2.4 shows the differences in architecture between DQN and dueling DQN. These are

only the tip of the iceberg regarding advances in Deep RL. For instance, deep policy

gradient approaches like Deep Deterministic Policy Gradient [32] and Proximal Policy

16

Optimization [56] have shown state-of-the-art performances in environments with

continuous action space like robotics.

2.3 Partially Observable Markov Decision Process

In the case of MDPs, we assume an environment’s state space is entirely observable

which is a stringent assumption if we consider real-life problems. Considering the

world we live in as an environment, there are way too many variables for us to

have access to a complete state, let alone processing it. Therefore, our agents ought

to be able to perform when the environment is only partially observable, leading

to the notion of the observation space O ∈ S [66]. Such partial observability is

captured by the formalism of Partially Observable MDP, which we will use in this

work. Under this formalism, our trajectories will no longer have states which are

replaced with observations - o1, a1, r1, o2, a2, r2, ...ot, at, rt, which is sometimes called

a history. Formally, a partially observable MDP (POMDP) [24] is defined as follows:

Definition 2.9. A POMDP is a 7-tuple (S,A, T,R,Ω, O, γ) where:

S: state space

A: action space

T : S × A× S → [0, 1], is the transition function of the environment

R: S × A× S → R, a reward function from the environment

Ω: observation space

O: S × Ω→ [0, 1], is the function that gives the conditional probabilities of an

observation

γ: discount rate

At each time step t, given a state st ∈ S from the environment, the agent receives

the observation ωt ∈ Ω with probability O(st, ωt). Then, the agent takes an action

at ∈ A with the environment transitioning to st+1 based on the transition function

T (st, at, st+1) emitting a reward rt from the reward function R(st, at, st+1). Note that

as the observation does not have the full information of the state, it might not be rich

enough to capture all the crucial information or the system dynamics. In other words,

the formalism is likely to be no longer Markovian, which the observation no longer

17

captures the history sufficiently. In that case, it is common to use a history of past

observations to better estimate the system dynamics or the state of the environment

[12].

2.4 Reinforcement Learning in Handling Partial

Observability

As this work bases our investigations on deep RL algorithms in environments with

partial observability, this section briefly covers some common techniques in deep RL

to handle partial observability. One key technique to handle partial observability in

deep RL is the introduction of recurrent components in the architecture. This was

first utilized in [17], which Deep Recurrent Q-Network was proposed (DRQN). Unlike

DQN, The architecture has an LSTM network as the penultimate layer with a linear

final layer to output action values. By adding recurrency, it is able to learn to retain

and summarize the past, offering more information to capture the underlying system

state. In other words, it is able to better estimate the action-values from the sequence

of observations, closing the gap between Q(o, a|θ) and Q(s, a|θ). Figure 2.5 shows the

architecture of DRQN. Another notable difference in this line of methods is the use

of the experience replay buffer. As the sequential property of an episode has to be

preserved for the recurrent component to learn properly, the replay buffer stores data

samples on the granularity of episodes instead of transitions. In each update iteration,

a minibatch of episodes is sampled to perform learning.

In this work, we use a variant called Recurrent Replay Distributed DQN (R2D2),

one of the more recent works in this line of research [26]. It also uses an LSTM layer.

But instead of storing regular transition tuples or episodes, it stores fixed-length

sequences of s, a, r in the replay with adjacent sequences overlapping by m time

steps, which is a hyperparameter. Note that we do not use the distributed version

since it is not needed in our work. The work further explores ways to initialize the

starting hidden state of RNN as the typical zero start state strategy limits its ability

to fully learn long temporal correlations [26]. Therefore, it proposes two strategies:

1. Stored state: stores the recurrent state in the replay buffer to initialize the

network at training time. It alleviates the issue with zero start state strategy

but may suffer from representational drift. This would lead to staleness in the

recurrent state as the stored ones could be generated by a quite old version of

the network.

18

Figure 2.5: The architecture of DRQN, taken from [17]

2. Burn-in: allows the network a ’burn-in’ period by using a portion of the re-

play sequence to unroll the network and get a start state. The update is only

performed in the remaining part of the sequence. [25] hypothesizes that this

allows the network to sometimes recover from a poor start state before needing

to produce accurate outputs.

By examining the recurrent states in the replay buffer, they demonstrated how the

mixture of the stored state and burn-in strategies mitigates the issue of staleness and

improves learning of long temporal correlations.

2.5 Decentralized Partially Observable Markov De-

cision Process

Decentralized Partially Observable Markov Decision Process (Dec-POMDP) is a pop-

ular framework in modeling multi-agent scenarios, specifically for the decision-makings

of a team of cooperative agents [45]. In this setting, each agent can only learn to make

decisions based on its observation which does not contain the information of the entire

environment. Together with multiple agents acting in the environment, agents often

19

have to learn to reason about other agents and learn how to coordinate or communi-

cate by observing each other in order to achieve decent performance. This effectively

means that the other agents’ policies become part of an agent’s observation func-

tion in a Dec-POMDP setting. The learning task is then to find policies that both

produce high reward actions and communicate information effectively to the other

agents. Figure 2.6 depicts how a Dec-POMDP works with two agents.

Figure 2.6: Schematic representation of a Dec-POMDP, taken from [45]. At every
time step, each agent takes an action based on its own observation

Formally, assume a Dec-POMDP with N agents, with each assigned an index

i ∈ N , it can be defined as follows:

Definition 2.10. A Dec-POMDP is a 9-tuple (D,S,A, T, R,Ω,O, O, Z, γ) where:

D: set of N agents - [1, N]

S: state space

A: joint state space, A1 × A2 × ...AN

T : S × A× S → [0, 1], is the transition function of the environment

R: S × A× S ← R, a joint reward function from the environment

Ω: observation space

O: joint observation space, Ω1 × Ω2 × ...ΩN

20

Oi: S × Ωi → [0, 1], is the function that gives the conditional probabilities of

an observation

Z: S × D → Ω, is the observation function. If it is stochastic, it produces an

observation based on the observation probability function

γ: discount rate

The environment trajectory and the action-observation history (AOH) of an agent i

are denoted as τt = s0, a0,st, at and τ it = oi0, a
i
0,o

i
t, a

i
t respectively. Each agent

learns a policy πi(τ i) conditioned on its AOH, with the goal to learn a joint policy

π = πi that maximizes the total expected return Jπ = Eτ P (τ |π)R(τ), where R(τ) is

defined as:

R(τ) =
∑
t′>=t

γt
′−tr(st, at) (2.17)

where at corresponds to the joint action of the agents at time step t.

2.6 Multi-Agent Reinforcement Learning

Multi-agent Reinforcement Learning (MARL) refers to a subfield of RL developing

methods to handle situations when there are more than one agent acting in the

environment. This includes problems that can be modelled as Dec-POMDPs. Similar

to RL, each agent in MARL also has the goal of maximizing a scalar reward signal.

Depending on the environment, it can be shared among agents or each has its own

reward function. The environment can also be cooperative, adversarial, or mixed.

However, the reward that each agent receives depends on the joint action of all the

agents. The goal of a MARL algorithm, in general, is to learn control policies πi

for each agent i that could maximize reward. This work focuses on the cooperative

setting where agents share the same reward function.

There are 4 major areas of focus in the field of MARL, namely, analysis on emer-

gent behaviors, agents modeling agents, learning cooperation, and learning communi-

cation [18]. Firstly, analysis on emergent behaviors looks at how different behaviors,

including cooperative and competitive behaviors, emerge from learning. Many of the

works in the area propose methods to induce these behaviors, independently of the

learning algorithm and architecture, including several using various forms of reward

shaping. Secondly, for agents modeling agents, it is about the ability of agents reason-

ing about other agents, making predictions about their behaviors, By forming beliefs

21

about other agents, an agent takes into account of other agents’ influence on the

environment to make more informed decisions. Thirdly, to learn how to cooperate,

this domain looks at architectural and algorithmic approaches to induce cooperation

without communication. Lastly, to learn how to communicate, agents try to max-

imize rewards by sharing information through communication channels in the envi-

ronment, which can range from signaling actions to sending discrete or continuous

messages through a communication channel. A seminal work would be Differentiable

Inter-Agent Learning (DIAL) [11] which facilitates communication through means of

gradients passing across agents.

This section provides a non-exhaustive overview of some common MARL algo-

rithms used to handle Dec-POMDP problems. Here, we focus on settings with cen-

tralised training but decentralized execution (CTDE). Under this setting, commu-

nication among agents is not restricted during learning, performed by a centralized

algorithm. During execution, the agents’ communication becomes limited only via

the limited-bandwidth channels [11]. We also use some decentralized learning meth-

ods as baselines. Only the algorithms directly used in this work will be elaborated

on in detail.

2.6.1 Independent Q-Learning

One commonly used MARL method, a natural extension to a classic RL method, is

independent Q-learning (IQL) [67]. In this case, each agent learns its own action-value

function from its own states and actions. If the environment is partially observable,

the function is conditioned on its action-observation history instead. When applied

to deep RL, this can be done by having each agent learning using DQN with a re-

current component to account for partial observability. It has been shown to perform

well empirically in many environments [72, 34]. This will be used as a baseline for

comparison in this work

IQL has the appealing property of circumventing the combinatorial nature of the

MARL problem mentioned previously. This is because each agent learns its value

function independently and the model does not have to learn from a joint state

space and/or a joint action space. Therefore, it is quite scalable. Yet, given such

independence in information among agents, the environment could easily appear to

be non-stationary to the agents as other agents are also learning and taking actions.

This leads to instability in convergence and the nonexistence of any convergence

guarantees.

22

2.6.2 Off-Belief Learning

OBL is a recently proposed method in handling the issue of interpreting the actions of

other agents and accounting for how they will interpret our actions in turn [21]. The

approach sets to learn optimal grounded policies, which do not interpret the actions

of other agents and assumes other agents do the same to their actions. This is often

desirable as making wrongful assumptions can often be a source of coordination fail-

ure. Thus, learning or starting with grounded policies is important to avoid reasoning

about partners’ actions.

To learn a grounded policy, the grounded belief BG has to be defined as a modified

belief that conditions only on the observations but not any other agents’ actions:

BG(τ |τ i) =
P (τ)ΠtP (oit|τ)∑
τ ′ P (τ ′)ΠtP (oit|τ ′)

. (2.18)

With the grounded belief, an optimal grounded policy πG can be formulated to be

any policy that plays an action that maximizes the expected reward at each AOH τ i,

with the state distribution at τ i drawn from the grounded belief BG and πG being

played thereafter. The goal of OBL is to learn this πG.

Here, we assume all agents to be playing a common knowledge policy π0 up to τ i.

Then, an agent’s belief distribution B, conditioned on their AOH can be computed

as:

Bπ0(τ |τ i) = P (τ |τ i, π0) (2.19)

The belief distribution fully describes the effect of the history on the current state.

We assume each agent to play a ’counterfactual’ policy π0 (e.g. uniformly random

policy) to reach τ i and π1 thereafter, which the latter corresponds to the optimal

policy under the same assumptions. We denote the return for this to be V π0→π1(τ i),

which precisely means the return of sampling τ from Bπ0(τ
i) with all players playing

π1 from this trajectory. The counterfactual value function and state-action value

function are defined as follows:

V π0→π1(τ i) = E
τ∼Bπ0 (τ i)

[V π1(τ)], (2.20)

Qπ0→π1(a|τ i) =
∑
τt,τt+1

Bπ0(τt|τ it)[R(st, a) + T(τt+1|τt)V π1(τt+1)]. (2.21)

Qπ0→π1 corresponds to the return from playing a at τ i with the assumption of π0 was

played to reach τ i and π1 is played in future steps.

23

The OBL operator is defined as follows to map π0 to π1:

π1(a|τ i) =
exp(Qπ0→π1(a|τ i)/T∑
a′ exp(Qπ0→π1(a′|τ i)/T)

(2.22)

where T is a temperature hyperparameter. There are theoretical details to provide

support in how OBL can lead to an optimal grounded policy. Please see [21] for more

details. It is also worth noting that, although learning an optimal grounded policy

is crucial, some settings do benefit from counterfactual reasoning and convention

formation. Fortunately, the repeated application of OBL leads to direct control of

the number of counterfactual reasoning loops to be carried out by an agent.

To compute an OBL policy using value iteration methods, the Bellman equation

for Qπ0→π1(τ i) for each agent i can be put as follows:

Qπ0→π1(at|τ it) = E
τt∼Bπ0 (τ

i
t),τt+k∼(T,π1)

[t+k−1∑
t′=t

R(τt′ , at′)+∑
t+k

π1(at+k|τ it+k)Qπ0→π1(at+k|τ it+k)
]

(2.23)

where τt+k is the next k steps of history in which player i acts. It is sampled from

the distribution of successor states where all players play according to π1.

To overcome the issue that the states reached by π1 may be reached at very

low probabilities under π0, the variant Learned-belief OBL was proposed [21]. In

this variant, an approximate belief B̂π0 that takes τi as input and can sample a

trajectory from an approximation of P (τ |τ i, π0). The belief model is computed based

on [20]. Q-learning is then performed with a modified approach in computing the

target value Q(a|τ it+2). In particular, a new τ ′ is resampled from B̂π0(τ
i
t). Then, a

transition to τ i
′
t+1 is simulated with other agents playing policy π1. The bootstrapped

value is then maxaQ(a|τ it+2). Figure 2.7 shows the differences in the learning rules

of independent Q-learning (IQL) and LB-OBL. The latter only involves fictitious

transitions. Precisely, in addition to applying the action ait given AOH τ it of the

active player i to the actual environment, the action is also applied to a fictitious

state sampled from the belief model. The fictitious environment is then forwarded to

the next state to compute the target after the other agent also takes a fictitious action.

The learning target becomes the sum of fictitious rewards r′t, r
′
t+1 and the fictitious

bootstrapped value maxaQ(a|τ it+2). Practically, similar to what was done in [21], this

target is computed during rollouts and stored along with the actual trajectory τ into

the replay buffer. This may lead to the targets getting stale as they are precomputed

24

Figure 2.7: Learning rule differences between IQL and LB-OBL, taken from [21]

by an older target network. However, the authors find it to be fairly stable. Hence,

we follow the same practice.

2.6.3 Differentiable Inter-Agent Learning

In [11], two methods were proposed to demonstrate end-to-end learning of protocols in

complex multi-agent environments, namely, Reinforced Inter-Agent Learning (RIAL)

and Differentiable Inter-Agent Learning (DIAL). The former uses deep Q-learning and

the latter proposes backpropagating the learning gradients through communication

channels across agents. Hence, the approach is based on centralized learning but

decentralized execution, meaning these gradients are only allowed to flow across agents

during training. Here, we will focus on DIAL.

DIAL addresses the idea of allowing agents to give each other feedback about their

communicative actions, by opening up the communication channels for gradients to

be pushed through from one agent to another. This provides richer feedback to the

agent, leading to a reduction in the amount of learning by trial and error with more

efficient discovery of effective protocols.

More precisely, during centralized training, direct connections between the output

of one agent’s network and the input of another agent’s are established through com-

municative actions. In other words, agents can send real-value messages during this

stage which are only restricted to discrete messages during execution. These real-

value messages are generated from the networks, gradients can then be propagated

along the channel, leading to end-to-end propagation across agents.

The proposed network is called C-net. It produces two different types of values,

namely the Q-values Q(·) of the environment actions Aenv and the real-valued mes-

sages ma
t . The former is used by an action selector module to decide on an action

25

Figure 2.8: How gradients flow in DIAL, taken from [11]

while the latter bypasses that module and is passed to another agent after being pro-

cessed by the discretize/regularize unit DRU(ma
t). The DRU is a function that takes

in a real-valued message that is expressed as follows:

DRU(ma
t) =

{
Logistic(N(ma

t , σ)), if centralized learning

1{ma
t > 0}, if decentralized execution

(2.24)

where σ is the standard deviation of the noise added to the cheap talk channel. Figure

2.8 shows how the gradients flow with DIAL. We can see that in addition to the DQN

loss, the gradient term for m is also backpropagated based on the error from the

recipient of the message to the sender. This means the network can directly adjust

the messages so as to minimize the downstream loss, making it easier to learn and

explore good protocols. Note that we are using the OBL loss here instead of DQN

loss. Given the approach handles real-value messages during training, it can clearly

scale with settings that uses continuous messages in addition to discrete messages.

2.7 Information Theory

Information theory is a field of study focusing on quantifying, storing, and communi-

cating information [58]. This section lays out the concepts from information theory

26

that are used in this work.

2.7.1 Entropy

Entropy H(·) is considered as the average level of information or uncertainty inherent

in a random variable’s all possible outcomes [58]. It is expressed as:

H(X) = E
X∼p(x)

− log p(x), (2.25)

where X is a random variable. The entropy of a random variable is maximized

when the probability mass is spread as evenly as possible and minimized when it is

concentrated at a single point.

2.7.2 Conditional entropy

Conditional entropy H(·|·) of two random variables are expressed as follows:

H(X|Y) = H(X, Y)−H(Y), (2.26)

where X and Y are random variables and H(X, Y) is defined as:

H(X, Y) = E
X∼p(x),Y∼p(y)

− log p(x, y). (2.27)

In RL, conditional entropy better represents a policy’s stochasticity as it is conditioned

on the state or observation [61].

2.7.3 Mutual information

Mutual information measures the strength of the dependence between two random

variables. The greater the mutual information between two random variables, the

more the outcome of one variable affects the conditional distribution of the other.

Mutual information is defined as:

I(X;Y) = H(Y)−H(Y |X) = H(X)−H(X|Y). (2.28)

It can be interpreted as the amount of uncertainty about one variable that is elimi-

nated by observing the realization of another variable.

27

Chapter 3

Related Work

This chapter reviews some of the related work that is relevant to our proposed method.

Specifically, we would like to cover works that solve Dec-POMDP problems and pro-

pose similar ideas in using mutual information like ours in cheap talk discovery, and

methods that learn how to communicate similar to the one we propose in cheap talk

utilization. We note that our setting is quite different from many existing works in

learning how to communicate given that we require the agent to discover the chan-

nels themselves, which many off-the-shelf protocol learning algorithms would not work

without additional treatment for discovery.

3.1 MARL algorithms for Dec-POMDPs

Many MARL methods have been proposed to deal with cooperative multi-agent

decision-making problems under the Dec-POMDP formalism [45]. We will cover

methods that tackle cooperative multi-agent problems with a focus on approaches

that tackle the credit assignment problem.

To begin with, approaches like [62] transform a Dec-POMDP problem into a

simpler formalism that can be solved with planning algorithms, which is more com-

putationally tractable than the original formalism. In recent years, the use of deep

neural networks as function approximators to solve Dec-POMDP problems has found

remarkable successes. [16] extends existing algorithms based on policy gradient,

temporal-difference error, and actor critic methods to cooperative multi-agent set-

tings, showing how deep MARL algorithms can scale successfully in continuous action

spaces to perform complex continuous tasks like bipedal walking. In this approach,

agents are solely trained based on their respective observations with no channels or

ways for them to communicate but parameters are shared across agents. [55] pro-

poses Multi-Agent Common Knowledge Reinforcement Learning by allowing a group

28

of agents to condition on their common knowledge, in addition to their respective ob-

servations. By exploiting common knowledge, agents can demonstrate more complex

decentralized coordination in benchmarks like StarCraft II unit micromanagement

tasks. [10] proposes counterfactual multi-agent policy gradients which uses a cen-

tralized critic to Q-function estimation and decentralized actors for policies learning.

The approach addresses the multi-agent credit assignment problem by using a coun-

terfactual baseline that marginalizes out an agent’s action with the other agents’

actions fixed. This provides information on the contribution an agent’s action has

on an outcome which was shown to significantly improve performance. [64] proposes

value decomposition network (VDN) that decomposes the team value function into

agent-wise value functions, with the latter conditions only on the individual agent’s

observations and actions. This leads to better credit assignment across agents, ad-

dressing the issue of the ”lazy agent” problem in which agents are credited for not

doing anything useful because some other agents performed useful actions. [51] pro-

poses QMIX which takes the previous approach further by having the team value

function as a nonlinear combination of each agent’s action-value function instead of a

simple sum. This allows different weighing to be attributed to each agent. Note that

in this case, the team value function is conditioned on the state. [9] takes another

direction by learning explicit intrinsic reward for each agent instead of changing the

value function architecture like VDN and QMIX. By learning individual intrinsic re-

ward, agents are diversely stimulated at each time step, leading to a more effective

and informative credit assignment per time step.

3.2 Mutual Information in Reinforcement Learn-

ing

In this section, we will cover previous work in RL that leverages the idea of mutual

information. Mutual information has been used for many purposes across different

variables in the RL paradigm including improving exploration and regularization. In

[3], mutual information maximization was proposed to improve state representation

learning, which maximizes mutual information across spatially and temporally dis-

tinct features of observations. They showed that this approach leads to the capturing

of the underlying factors of a state, a more powerful representation. [40] proposed

using mutual information as empowerment to improve exploration. Specifically, the

approach looks for maximal mutual information, conditioned on a starting state s,

between a sequence of K actions a and the final state reached s′. An agent that

29

maximizes this value will go for the states from which it can reach the largest number

of future states within its planning horizon. [40] further derived a variational infor-

mation lower bound, so maximizing mutual information can be more tractable. [14]

proposed using mutual information for regularization to improve upon entropy-based

regularization. Precisely, entropy-based regularization improves exploration by en-

couraging policies to place probability mass on all actions while some actions may be

undesirable. Thus, [14] used mutual information to weigh the importance of actions,

leading to better action selection than entropy regularization approaches.

Mutual information has also been explored in the MARL setting. [69] proposed a

reward shaping approach based on mutual information to improve exploration in the

multi-agent setting. Unlike our approach which maximizes the mutual information

between an agent’s actions and the other agent’s observations, they proposed maxi-

mizing the mutual information between two agents’ transitions MI(S ′2;S1, A1|S2, A2).

This encourages an agent to visit critical points where it can influence the transition

probability of another agent. Using this quantity might have a similar effect as our

proposed mutual information quantity, but it might be harder to compute. They

showed that the approach gives rise to more coordinated exploration with better

policies in optimizing team performance. However, unlike our method, this approach

requires access to the full environmental state during training. [28] proposed a sim-

ilar framework as [14] but in the multi-agent setting. The approach maximizes the

mutual information between the actions of agents which showed state-of-the-art re-

sults in several benchmarks. [61] proposes a method to discover implicit communi-

cation protocols via minimum entropy coupling, separating communication and non-

communicative decision-making. Unlike cheap talk channels which facilitate commu-

nication explicitly, implicit communication refers to communication through actions

that have non-communicative effects on the environment. [23] proposed rewarding

agents for having causal influence over other agents’ actions using mutual informa-

tion to achieve better coordination and communication. Each agent is required to

learn a model of other agents to compute the influence reward in a decentralized

manner. The method shows improved performances in sequential social dilemma en-

vironments. [23] has the closest resemblance to our approach but it still assumes the

omnipresence and knowledge of communication channels and uses a different mutual

information quantity. They propose maximizing the mutual information of actions

among agents at each time step, which is not necessarily applicable to our situation

in terms of achieving cheap talk discovery.

30

3.3 Communication Protocol Learning in Multi-

Agent Reinforcement Learning

In this section, we will cover previous work in MARL that focuses on algorithms that

learn how to communicate among agents. Methods that we use like DIAL will be

omitted here as they will be covered in detail in section 2.6.3. [63] proposes CommNet,

a similar approach to DIAL in which agents are connected by differentiable continuous

communication channels but the messages are processed by a mean-pooling method,

making it suitable to deal with environments with a dynamic number of agents. [47]

proposes using a bidirectional recurrent neural network for communication channels.

Unlike DIAL and CommNet, BiCNet focuses on continuous action space and actor

critic methods. The choice of architecture for communication channels also allows

an agent to deliver information to others one by one. [48] proposes a policy gradi-

ent method with a shared memory device for communication. Specifically, during

training, agent learns to perform read and write operations on the memory device

to form a common representation of the world and as an explicit communication

protocol. They showed superior performance on tasks that require coordination and

synchronisation skills. [27] proposes the message-dropout technique which drops the

received messages through a communication channel at a specified probability. The

technique is shown to improve the robustness of learned protocols. [8] proposes a tar-

geted communication architecture to tackle the issue of what messages to send and

who to send them to. By including the consideration of the latter question, it leads

to more flexible collaboration strategies in complex environments. The method also

enables multiple rounds of communication before taking actions in the environment.

They showed superior performance with communication protocols that are more in-

terpretable and intuitive. [60] proposes a different approach that also considers the

question of when to communicate. A gating mechanism was proposed which can

control when to communicate. Together with the addition of individual rewards, the

proposed approach is also able to handle semi-cooperative and competitive settings

along with cooperative settings with better training efficiency. [30] focuses on refer-

ential games and showed that deep RL agents can learn communication protocols in

different cases, including when the inputs are symbolic data and pixel data. They

also find agents’ inability to learn more compositional communication protocols if

the input data are more entangled. [7] examines two main types of communication

protocols used in MARL, namely grounded channel that is restricted by the seman-

tics of the game and ungrounded channel in form of cheap talk. Interestingly, results

31

reveal that self-interested agents can use grounded channels to negotiate fairly but

are unable to use ungrounded ones, while prosocial agents are able to. This suggests

cooperation could be necessary for a language to emerge.

32

Chapter 4

Methodology

Figure 4.1: Comparative overview of our proposed method with a typical MARL
method. Task learning here refers to the learning of the main task.

In this thesis, we look at one of the most commonly used communication meth-

ods in MARL, known as cheap talk channels, which allow agents to send discrete

or continuous messages to each other without considerable cost. To the best of our

knowledge, existing approaches assume agents to have knowledge of these channels

and can be accessed whenever they decide to. Our work does away with this as-

sumption and requires the agents to learn the knowledge of these channels. In other

words, we ask the question of whether we can develop agents that can learn where

to best communicate with each other before learning what and how to communicate.

As mentioned in section 1.1, not only does this have a lot of potential applications, it

also requires the address of some of the open problems in MARL like credit assign-

33

ment given how the problem requires coordination and joint deep exploration among

agents.

Given that this is a problem that has not been explored before, in this section, we

would first provide a formulation of the problem and motivate how the decomposition

of the problem in this formulation would make the problem more solvable. Then,

we will go over in detail our proposed method in tackling cheap talk discovery and

utilization that is based on information theory and some of the most recent advances

in the field. Figure 4.1 shows a high-level comparison between our proposed method

and a typical MARL agent, which our method breaks the problem down into smaller

and more solvable components.

4.1 Problem Formulation

To begin with, we consider each agent’s action space A to be decomposable into

two subspaces, namely, the environment action space Aenv and communication action

space Acomm, where:

Aenv: environment action space, actions that have an impact on the state of the

environment.

Acomm: communication action space, actions that have no immediate impact

on the state of the environment or the reward that other agents receive but can

have an influence on other agents’ observations. They are used to communicate

information, commonly known as cheap talk actions.

Using our phone booth maze environment as an example, Aenv for the sender would

be actions that move its locations like Up, Down, Left and Right, while Acomm would

be actions that send messages to the receiver including Hint Up and Hint Down.

As discussed, in this setting, agents do not know where to best communicate,

meaning only certain places are ideal or possible for communication. We refer to

these places in the state space as the communicative state space Scomm ∈ S, which is

defined as:

Definition 4.1. The communicative state space Scomm of an environment is a sub-

space of its state space S. Assume the environment is in a state sc ∈ Scomm, at least

one agent in the environment can modify another agent’s observation by taking an

action a ∈ Acomm.

34

Similarly, the communicative joint observation space Ocomm can also be defined as

follows:

Definition 4.2. The communicative joint observation space Ocomm of an environ-

ment is a subspace of its joint observation space O. Assume the environment is in a

state sc ∈ Scomm with a joint observation Oc, at least one agent, say agent i, in the

environment can modify another agent’s observation, say agent j’s observation, ot+1
j

by taking an action a ∈ Acomm.

With these conceptualizations, the cheap talk discovery and utilization problem

can then be defined. Scomm corresponds to the places where the cheap talk channels

are and an agent has to learn to discover them and utilize them. Formally, the

problem can be further formulated as follows:

Definition 4.3. Cheap talk discovery refers to the problem of learning a policy

πdiscover in which agents take action in Aenv that could lead to states or observations

that are in Scomm or Ocomm.

Definition 4.4. Cheap talk utilization refers to the problem of what message to send

and how to send a message once the cheap talk channels are discovered, i.e. an agent

has a policy π to reach states in Scomm. In other words, what messages m should an

agent send to another agent in order to convey the correct meaning that could lead

to task completion.

To tie it back to a more concrete example, our phone booth maze environment, cheap

talk discovery would be the agent’s capability in discovering functional phone booths

while cheap talk utilization would be the agent’s ability to form a communication

protocol so the task can be solved by having the sender conveying the goal consistently

and the receiver interpreting the goal from the sender’s message correctly.

Even with a problem seemingly as simple as the phone booth maze environment,

the joint exploration problem is still severely difficult. This is because just for com-

munication to happen, it requires agents to stumble upon states that are in Scomm

(i.e. both the sender and receiver each happen to be in a functional phone booth).

As the main task’s reward signal does not directly motivate going to these states,

the motivation or signal to go to the booth is very weak, let alone having sufficient

experience to form a protocol among agents. Hence, the problem is quite formidable

for the agents to solve. Thus, we hypothesize that by breaking down the problem

that first learns to discover the communicative states before learning how to use the

discovered channels would greatly alleviate the joint exploration problem.

35

4.2 Cheap Talk Discovery

In this section, we will present our proposed method to achieve cheap talk discovery.

The method is composed of two components, namely Off-Belief Learning (OBL) [21]

and mutual information maximization. The former serves as our base learning algo-

rithm with sound theoretical properties that are beneficial for the subsequent cheap

talk utilization step. The latter is our idea to induce agents to discover these cheap

talk channels based on mutual information.

4.2.1 Off-Belief Learning

As mentioned, the approach sets to learn optimal grounded policies, which do not

interpret the actions of other agents and assumes other agents do the same with their

actions. This is often desirable as making wrongful assumptions can often be a source

of coordination failure. Thus, learning or starting with grounded policies is important

to avoid reasoning about partners’ actions.

4.2.1.1 From Learned Belief to Exact Belief

Learning the beliefs of other agents is an open and hard problem in MARL. However,

since this is not the focus of the project, we would like to take this factor out of

our consideration in order to focus on the performance of the methods of interest.

Thus, to make sure the belief model does not influence our assessment, we use exact

belief models for our agents instead of learned ones. Given that our environments

have relatively straightforward dynamics, we are able to hard code the belief models

without significant time and effort. Specifically, for OBL, we need the belief model

of the policy π0 to sample from, which is a random policy. Our exact belief models

are initialized with a transition matrix T and a starting belief vector b. At each time

step t, the belief is updated as follows:

bt+1 ← bt ·T (4.1)

These belief models are reset at the end of every episode. Figure 4.2 shows how the

belief model of the sender in the phone booth maze environment evolves over time,

which demonstrates how the probabilities propagate as the belief is being updated.

Note that they are essentially belief probabilities of where the sender is after assuming

it follows a uniformly random policy π0. For the sender’s belief model, it has a special

case when it successfully sends a message, which narrows down its possible location

36

Figure 4.2: Heatmap illustration of how the sender’s belief model in the Phone Booth
Maze environment evolves over time

to the functional phone booths. Our exact belief models handle this special case

explicitly and would recompute the belief probabilities.

4.2.1.2 Why Off-Belief Learning?

OBL has appealing theoretical properties that are very useful for learning communi-

cation. Two properties derived in [21] are particularly of interest:

Theorem 4.1. For any temperature T > 0 and starting policy π0, OBL computes a

unique policy π1.

Theorem 4.2. Applying OBL to any constant policy π0(a|τ i) = f(a) or policies that

only condition on the public state yields an optimal grounded policy in the limit as

temperature T tends to zero.

Theorem 4.1 offers an advantage for policies learned from OBL as they are unique,

unlike most MARL methods. In other words, OBL always converges to the same

policy regardless of the random initialization of weights and other hyperparameters.

What’s more, theorem 4.2 is especially beneficial for cheap talk discovery. Given

that we do not want any conventions (i.e., a communication protocol) to form during

the learning process in cheap talk discovery which would affect the rewards received,

learning an optimal grounded policy over communicative actions would be preferable.

This means it is preferred to learn a policy that discovers the channels, or cheap talk

actions that could lead to outcomes observable by other agents, while not having a

preference over any cheap talk actions. Advantageously, OBL theoretically guarantees

37

to yield such policy. In the case of the Phone Booth Maze, the actions of Hint Up

and Hint Down after the cheap talk discovery learning process should be equally

preferred by the agent. Such a grounded policy is preferable as we separate out the

protocol learning process into a separate cheap talk utilization problem. This makes it

easier to learn different protocols for different types of communication channels. More

importantly, by having the policy grounded, it allows more flexible adaptation when

properties of channels alter. Hence, better performance in zero-shot coordination can

be expected. In the case of the phone booth maze, imagine the agent is put into a

slightly different version of the environment with the phone booth sending negated

versions of whatever messages the agent sends, the agent with the grounded policy

should adapt to this environment quicker given that it has an optimal grounded policy.

4.2.2 Mutual Information Maximization

OBL offers us the ability to learn optimal grounded policies, which makes cheap talk

discovery easier by learning a uniform policy over cheap talk actions. However, OBL

alone is not sufficient given the lack of incentives to visit cheap talk channels. As

using these channels is not immediately rewarded, not to mention they have to be

used properly in order to be consistently rewarded in expectation (i.e., forming a

protocol), agents are simply not well motivated to find these channels.

To discover cheap talk channels that can facilitate communication with other

agents, an agent has to know which channel can actually affect another agent when

used. In other words, useful cheap talk channels are the ones that can influence

another agent’s observations. In the case of the phone booth maze, the sender should

discover that the phone booth connected to the receiver’s end is the one to be used

in order to communicate with the receiver, given that it is the only phone booth

which cheap talk communication can be transmitted to the receiver. To induce such

discovery, we propose a different reward function and loss function based on mutual

information as defined in 2.28.

4.2.2.1 Mutual Information Reward

Using the phone booth environment as an example, we propose using mutual informa-

tion as an extra term to the reward function to encourage greater mutual information

between the sender’s (denoted as agent 1) actions A1 and the receiver’s (denoted as

agent 2) observations O2. This can also be considered as a form of reward shaping

[42]. The reward function is modified as follows:

38

R′(τt, π0, π1) = R(τt, a) + αH(π1) + βI(A1, O2). (4.2)

where α and β are hyperparameters. Here, the first term is the environmental reward

and the second term corresponds to the entropy of π1 which encourages the policy to

be more stochastic, akin to the maximum entropy RL objective [73]. The third term

is the mutual information term mentioned above which can be explicitly expressed

as:

I(A1, O2) = E
a1∼A1,o2∼O2

[log(p(a1|o2)− log(p(a1))] (4.3)

We assume we have a perfect environment model which allows us to estimate

p(a1|o2). We would need density-based approaches to estimate this term as we move

on to more difficult environments that do not have easily accessible and perfect en-

vironment models [49, 39]. The proposed reward function in equation 4.2 can be

directly substituted into the reward function in the update equation 2.23. Once we

have agents that can discover cheap talk channels, we can employ off-the-shelf cheap

talk utilization algorithms like DIAL [11]. To estimate p(a1|o2), the term can be

further expressed as follows:

I(A1, O2) = H(A1)−H(A1|O2)

= H(A1) +H(O2)−H(A1, O2)

= E
a1∼A1

[− log(p(a1))] + E
o2∼O2

[− log(p(o2))]− E
a1∼A1,o2∼O2

[− log(p(a1, o2))]

=
∑
a1∼A1

[−p(a1) log(p(a1))] +
∑
o2∼O2

[−p(o2) log(p(o2))]

−
∑

(a1,o2)∼(A1,O2)

[−p(a1, o2) log(p(a1, o2))]

where p(o2) =
∑

a1∼A1 [p(a1, o2)] and p(a1, o2) = p(o2|a1)p(a1). We note that this

approach generalizes to any pair of agents in a MARL environment.

Practically, using the perfect environment model (we simply give the agent ac-

cess to a replica of the environment), we first save the current configuration of the

environment and load it into the replica. Then, we perform every action possible for

the agent and reset the replica to the current configuration while keeping track of

the observations seen. By doing so, we are able to compute the mutual information

reward term.

39

4.2.2.2 Mutual Information Loss

Throughout our experiments, we noticed that the mutual information reward term

might not be sufficient in retaining an optimal grounded policy over communicative

actions. Although the additional reward does motivate the agent to discover and go

to these communication channels, it does not help in distinguishing communicative

actions Acomm from actions that keep the agents within Scomm. This leads to a policy

that favors all these actions equally. Ideally, we prefer a policy that only favors the

communicative actions equally when in Scomm. This issue arises because the reward

term is computed based on taking all the actions from a particular state. Therefore,

for the same policy, the mutual information reward term for staying at communication

channels and that of taking communicative actions are actually the same, resulting

in these actions being treated equally. In the case of the phone booth environment,

this would mean the communicative actions - Hint Up and Hint Down will be treated

equally with environment actions Aenv that keep the agent in the functional phone

booth.

To deal with this issue, we propose adding a mutual information loss to the loss

function which uses the policy from the model. By having this extra term in the loss

function, the model would update to maximize the mutual information between an

agent’s action and the other agent’s observation, which is maximized when the policy

takes the communicative actions more. For each iteration i, extending equation 2.14,

the loss function is expressed as:

Li(θi) = LOBLi (θi)− κI(A1, O2; πθ)i (4.4)

where:

LOBLi (θi): OBL loss at iteration i

I(A1, O2; πθ)i: Mutual information loss at iteration i

πθ: the policy from the model

κ: Hyperparameter to weigh the mutual information loss term

Note that a minus term is used here as we are trying to maximize the mutual infor-

mation term. By combining this loss term with the mutual information reward, the

agent is then able to discover cheap talk channels and learn to prefer communicative

actions that correlate with high mutual information.

40

4.3 Cheap Talk Utilization

In this section, we will go over our proposed component to achieve cheap talk utiliza-

tion. After discovering cheap talk channels, agents have to learn how to use them by

forming a proper protocol. Here we refer to learning a protocol as agents forming a

consensus in terms of how messages are interpreted. In the case of the phone booth

maze, an example protocol would be Hint Up and Hint Down being interpreted by

the receiver as 1 and 0 respectively. In this work, we propose using Differentiable

Inter-Agent Learning (DIAL) [11] as our algorithm for cheap talk utilization, which

has been shown to learn protocols efficiently. We will cover how we adapt DIAL

to our setting. Note that there could be many other approaches to perform cheap

talk utilization. However, due to the limitation of time and computing resources, we

leave the benchmarking of different cheap talk utilization methods for future work

and focus on how our proposed framework serves as a promising starting framework

to handle such problems.

4.3.1 Differentiable Inter-Agent Learning with Experience
Replay

As DIAL backpropagates gradients across agents, in [11], an entire trajectory of an

episode is generated to maintain the gradient chain. This is inherently not fully

compatible with our problem for two reasons. Firstly, OBL itself is an experience-

replay-based method in which updates are performed based on batches of transitions

sampled from the replay buffer. Furthermore, unlike in the environments used in [11]

which messages are sent between agents in every time step, messages can only be sent

when the environment is in a state s ∈ Scomm. In other words, direct connections can

only happen occasionally within an episode when a connection is established between

agents by being in the communication channels (i.e., in the phone booths for the

phone booth maze environment).

As a result, we have adapted DIAL to make it compatible with our setting and

work well with experience replay buffers. To do so, we have a separate replay buffer

that is designed to work with DIAL. Specifically, during an episode, we keep track of

the transitions and only add the trajectory to the buffer when communicative actions

are taken successfully. Hence, the last two transitions of an added trajectory would

be an agent taking a communicative action and another agent taking an action after

receiving a message. So the target would be the learning error of the latter agent which

would be backpropagated through to the sender’s sequence actions. Additionally. we

41

Figure 4.3: How gradients flow through our proposed architecture, with reference to
[11]

also tried a version of a buffer that stores entire episodes with flags that indicate

which transitions to allow direct connections. Experimentally, the latter appears

to be able to learn a protocol much more effectively, most likely due to less noisy

gradient information by having full trajectories, leading to agents assigning credits to

communicative actions more accurately.

We notice that this replay buffer for DIAL would require the implicit assumption

of knowing when the agents are using the communication channels. But we envision

that this can be known by the mutual information value we obtain from the discovery

process, acting as a trigger to the utilization process in a heuristic manner. Hence,

whenever high mutual information is observed, the trajectory will be added to this

special buffer for DIAL. We leave the exploration of different types of replay buffer

for DIAL as future work.

4.4 Putting It All Together

Figure 4.3 provides a complete overview of how gradients flow when putting all com-

ponents of our proposed method together. Notice that when comparing it with figure

2.8, an extra Pseudo-Environment object is present which corresponds to the replica

environment that is used to perform OBL sampling. The figures show the updates

when the agents are in the communication channels in which both OBL and DIAL

would be in action. The message is omitted for agent 2 to match with the phone

42

booth maze setting where the receiver has nothing to send to the sender. These

different learning paths do not activate at the same time due to their different roles

as pointed out in the 3 learning stages illustrated in Figure 1.1. Precisely, during

the discovery stage, only OBL with mutual information maximization is activated

to discover communication channels. Next, with the discovery policy, DIAL will be

performed with normal Q-learning to learn a communication protocol and solve the

task. Note that normal Q-learning is used here instead of OBL because the latter

prevents formation of conventions, which is needed here once an optimal grounded

policy over communicative actions is learned with communication channels discov-

ered. Algorithm 3 further provides a detailed step-by-step description of how our

proposed method functions with all components working together.

43

Algorithm 3: Pseudocode for our proposed method

1 for each agent do
2 Initialize replay memory for OBL DOBL with capacity N
3 Initialize replay memory for DIAL DDIAL with capacity N
4 Initialize action value function Q with random weights θ, using

architecture C-Net based on R2D2
5 Initialize target action value function Q̂ with random weights θ− = θ ,

using architecture C-Net based on R2D2

6 for e = 1, Max Episode do
7 Initialize s
8 while s 6= sterminal do
9 for each agent do

10 Select a from o based on policy derived from Q, e.g. ε-greedy
policy or stochastic OBL policy

11 Take action a to observe reward r and next state o′

12 Take action a in Pseudo-Environment to perform OBL sampling
with mutual information computation

13 Store the transition into DOBL

14 if High mutual information is observed then
15 Store trajectory into DDIAL

16 Sample random minimatch of transitions from DOBL

17 Sample random minimatch of transitions from DDIAL

18 if Discovery stage then
19 Perform a gradient descent step on LOBLi (θi)− κI(A1, O2; πθ)i

with respect to the network weights θ

20 else
21 Perform a gradient descent step on (yi −Q(o, a; θi−1))

2 for
DIAL with respect to the network weights θ

22 Perform a gradient descent step on LIQLi (θi) with respect to
the network weights θ

23 Every C steps, set Q̂ = Q

44

Chapter 5

Experiments and Results

5.1 Experimental Setup

5.1.1 Environment Design

As part of our contribution, we designed and implemented a configurable environment

to evaluate agents in cheap talk discovery and utilization, called the (multi-) phone

booth maze. The environment has two agents in the classical sender-receiver setting

interacting in a discrete GridWorld. These two agents are placed into separate rooms

with the goal being the receiver escaping successfully from the correct exit in one

of the doors in its room. Importantly, only the sender is given the correct hint on

which door is the correct one and it is the sender’s job to communicate the goal to

the receiver. Although they are isolated in different rooms, the rooms are connected

by phone booths that would allow transmissions of messages. Some of the booths are

functional while some of them are not. Therefore, the sender and the receiver have

to learn to go to connected booths in order for the sender to communicate the goal

information to the receiver with a learned protocol so the receiver can exit correctly.

A positive reward is given if the receiver exits correctly and a negative reward

is given if the receiver exits incorrectly. Here, we use rewards of 1.0 and −0.5, re-

spectively. If the episode times out, no reward is given. Both agents have the envi-

ronment actions of UP, DOWN, LEFT, RIGHT, NO-OP with the last action as not

moving. The sender has two extra communicative actions, namely HINT-UP and

HINT-DOWN which only has an effect when both agents are in the functional phone

booths. The observations for the agents consist of a tensor of 3 channels plus some

role-specific information. The channels are the wall channel, phone booth channel,

and the agent channel, which are essentially binary grid encoding of each position for

the existence of wall, phone booth, and the agent respectively. For the sender, it has

45

Figure 5.1: Visual illustration of an instance of the Phone Booth Maze environment

an additional 2-bit encoding vector as goal information. Specifically, if the receiver

should go up, the sender would get a vector of
[
1 0

]
. If the receiver should go down,

the sender would get
[
0 1

]
instead. For the receiver, it has a communication to-

ken vector. If the sender performs a HINT-UP with both of them at the functional

booths, it would be a vector of
[
1 0

]
. On the other hand, if the sender performs a

HINT-DOWN, it would be
[
0 1

]
.

Figure 5.1 shows an instance of what the environment would look like when vi-

sualized. There are multiple phone booths in the environment, acting as cheap talk

channels, which allow the sender to communicate the goal to the receiver. In this

instance, there is only one phone booth in the sender’s room that is connected to the

phone booth in the receiver’s room. The connected phone booths are indicated by

the connecting red cable in the figure. Many aspects of this environment are config-

urable to allow extensive investigation and exploration of different algorithms, some

key adjustable features are:

• lengths: the length of each of the agent’s rooms. The longer it is, the harder

the exploration becomes.

• starting points: the starting location of each of the agents.

• correct reward: The reward that is given when the receiver exits from the

correct door.

• wrong reward: The reward that is given when the receiver exits from the

wrong door.

46

Figure 5.2: Mutual information heatmaps of the sender’s room, based on two different
configurations of our environment

• use intermediate reward: If set as true, it gives an intermediate reward for

if both agents are at the functional booths, used for debugging purposes.

• episode limit: Episode length, meaning the episode terminates if it reaches

this number of steps.

• booth types: Among functional phone booths, they are configurable in two

major ways, namely, cost and noise. The former refers to the cost of using the

booth and the latter is modeled as the probability of a phone booth dropping

a message.

• booth locations: Locations of functional booths.

• number of decoy booths: The number of decoy booths in the sender’s room.

Decoy booths refer to booths that are not functional and not connected to the

booth in the receiver’s room. They appear as booths in the agent’s observation

(i.e., the booth channel).

• booth reinitialization: If set true, the decoy phone booths’ locations are

reinitialized whenever the environment is reset for the next episode, making the

problem more difficult.

• use mutual information reward: If set true, the environment would compute

the mutual information reward, used in the proposed method.

• use mutual information loss: If set true, the environment would return the

necessary information (i.e., tensor masks for each term in equation 4.2.2.1 to

compute the mutual information loss in a batch-based manner.

47

Such a high level of configurability allows users to create a wide variety of scenarios

to test their algorithms. For instance, different booth types give rise to phone booths

with different levels of mutual information. Figure 5.2 demonstrates two different

instances that are used in our experiments. The one on the left shows a sender room

with only one functional phone booth. The one on the right shows a sender room

with three functional booths with one of them having a noise probability of 0.5. Note

that the mutual information computed on the right figure was computed based on

1000 different random seeds.

5.1.2 Network Structure and Training

As briefly mentioned, all our methods use an architecture modified based on the R2D2

architecture by [26]. Instead of using convolutional layers, to lower the training time

due to limited computing resources, we use fully-connected neural networks with a

recurrent component as our neural network model. Hence, we flatten the observation

from the environment into a vector by first fattening the 3-channel tensor and then

concatenate it with the role-based information (i.e. goal encoding or communication

token). Precisely, the input is first processed by an LSTM layer to handle partial

observability. Then, it is followed by a two-layer and two-headed fully-connected

neural network of hidden size 128. The two heads are used to compute the action-value

function and the advantage function respectively. All neural network components

are implemented using the neural network library PyTorch [46], with the weights

initialized using Xavier initialization [13].

In terms of training, we use the Adam optimizer to train our models [29]. Since

the baselines we use and variants of all our proposed methods use Deep Q-Learning

as the backbone algorithm when training, we performed a hyperparameter sweep

over common hyperparameters and fixed them across all the methods. See Appendix

A.2.1 for details of the sweep values of other common parameters and A.2.2 for values

of method-specific parameters. All methods were trained for 12000 episodes (80000

episodes for cheap talk utilization) and evaluated every 20 episodes by taking the

corresponding greedy policy.

5.2 Results

This section reports and analyzes the results obtained from our experiments in cheap

talk discovery and utilization. We use IQL and OBL as our baselines to compare with

different variants of our proposed method. All results are obtained from test episodes

48

during evaluation. Each algorithm reports results from 4 random seeds. For curves,

the mean values are plotted with standard errors in the form of shaded areas, which

are defined as µ± σ/
√
N , where µ, σ and N are the mean value, standard deviation

and number of runs respectively. Since we could only run a limited number of runs

due to limited time, some of the shaded areas are visually obstructive. Therefore,

we will show the exponentially smoothed results in the main results with versions

without smoothing placed in the appendix.

5.2.1 Cheap Talk Discovery

In this section, we will look at different algorithms’ performance of cheap talk dis-

covery. To quantify this performance, we look at the number of steps it takes for

the sender to first reach the functional phone booth. As we are assessing the per-

formance of cheap talk discovery, the fewer number of steps it takes to reach the

functional phone booth the better the algorithm is in cheap talk discovery. At the

same time, we also examine the sender’s policy at the functional phone booth to see

an agent’s preference between environment actions Aenv and communicative actions

Acomm. The instance of the Phone Booth Maze environment we use here has one

functional phone booth with the following properties:

• lengths: 10 and 3 for sender and receiver respectively

• starting points: [5, 1] and [1, 1] for sender and receiver respectively

• correct reward: 1.0

• wrong reward: -0.5

• episode limit: 40

• booth types: 1 functional phone booth

• booth locations: [9, 1]

• number of decoy booths: 2

• booth reinitialization: False

49

5.2.1.1 Sanity check

As a sanity check to make sure our environment and backbone model are performing

as expected, we first look at the performance of our baselines (i.e., IQL and OBL).

We also include their variants with intermediate rewards to ensure that this form of

reward shaping does induce the cheap talk discovery behavior. Note that although

the intermediate reward appears to be simpler than our proposed mutual information

reward, it is less flexible and requires knowledge and explicit hard-coding of where

the cheap talk channels are, making it less transferable and applicable to different

environments.

Figure 5.3: Baselines’ performance on cheap talk discovery, IR stands for Intermediate
Reward. See Appendix A.11 for the same plot without smoothing

Figure 5.3 shows the performances of the baselines mentioned. As we can see from

the figure, the variants with intermediate reward reach the functional phone booth

much faster than their counterparts without the reward as they have no motivation

to use the phone booth at all. Particularly, OBL with intermediate reward is able to

reach functional phone booth the quickest. This shows promises to our more flexible

proposed method of mutual information reward. One interesting observation is the

difference between IQL and OBL when using the intermediate reward (IQL + IR,

OBL + IR). The OBL variant is able to reach the optimal discovery behaviour much

quicker than IQL. We hypothesize this is due to the fact that the trajectory sampling

based on a random belief in OBL offers better exploration properties than an ε-greedy

50

policy in IQL. We leave the investigation of this additional benefit of OBL for future

work.

5.2.1.2 Time step to cheap talk channel

After the sanity check, we are ready to examine how our proposed methods perform

in cheap talk discovery. Specifically, we examine how variants of our proposed meth-

ods based on mutual information maximization (i.e., mutual information reward and

mutual information loss) compare with the baselines.

Figure 5.4: Baselines’ and our proposed approaches’ performance on cheap talk dis-
covery, MI stands for Mutual Information. See Appendix A.11 for the same plot
without smoothing

Figure 5.4 shows the performances of the baselines and our proposed methods.

From the figure, we can see that our proposed methods (OBL + MI Reward, OBL +

MI Reward + MI Loss) which use mutual information reward are able to discover the

functional phone booth quickly while the baselines are not able to. It does appear

to be the case that the addition of the mutual information loss slightly slows down

the learning process with a bit higher variance. What’s more, using only mutual

information loss fails to discover the functional phone booth. We hypothesize that

without the mutual information reward, OBL + MI Loss simply does not generate

enough data for the agent to learn to reach the functional phone booth. After all,

our proposed approach (i.e. OBL + MI Reward + MI Loss) is able to discover the

functional phone booth with ease.

51

5.2.1.3 Policies at cheap talk channel

With our proposed methods based on mutual information maximization being able

to achieve the discovery of communication channels, we would like to look at their

respective policies to examine whether they can achieve the kind of optimal grounded

policy we prefer. To reiterate, with cheap talk discovery, we are looking to propose

methods that can uniformly prefer communicative actions over the rest of the actions

when using a functional communication channel. We specifically look at their policies

when both the sender and receiver are in the functional phone booth after training.

Figure 5.5: Different algorithms’ sender policy when both sender and the receiver are
at the functional phone booth. This shows our proposed methods in learning a more
grounded policy, preferring communicative actions over environmental actions that
keep the sender in the booth

Figure 5.5 shows different algorithms’ sender policy when both agents are at the

booth. To begin with, pure OBL almost learns a uniform policy across all actions,

which is expected and supports the correctness of our implementation of OBL. More

importantly, as discussed in section 4.2.2.2, reward shaping itself, no matter whether

it is the hard-coded intermediate reward or our proposed mutual information reward,

does not lead to an optimal grounded policy over communicative actions. This can be

observed in IQL + IR, OBL + IR and OBL + MI Reward. Even though they are able

to discover the cheap talk channels (especially the latter two) as demonstrated in the

52

last section, they do not learn an optimal grounded policy over communicative actions.

We can see that these policies end up learning to prefer actions that keep the sender

in the booth, including UP, DOWN, RIGHT and NO-OP. On the other hand, we can

see that our use of mutual information in OBL + MI Loss and OBL + MI reward + MI

loss leads to policies that are more optimally grounded over communicative actions.

Specifically, with OBL + MI reward + MI loss, it learns a policy that prefers all

communicative actions over all environment actions, demonstrating the effectiveness

of our proposed mutual information loss.

We note that given limited time and computing resources, these results are not

optimally tuned and we expect even more significant differences if we could train the

agents for a longer time, average the results over more random seeds and properly

tune the mutual information loss factor κ.

5.2.1.4 Can the agent discover the best cheap talk channel?

To further examine our proposed method, we ask the question of whether the agent

can discover the best cheap talk channel when there are multiple channels in the

environment. In our Phone Booth Maze environment, this means there are multiple

functional phone booths with varying properties. In this case, the best cheap talk

channel would be the one that costs the least to use and the most reliable (i.e., less

noisy, less dropping of messages). The instance of the Phone Booth Maze environment

we use here has 3 functional phone booths with the following properties:

• lengths: 5 and 3 for sender and receiver respectively

• starting points: [3, 1] and [1, 1] for sender and receiver respectively

• correct reward: 1.0

• wrong reward: -0.5

• episode limit: 40

• booth types: 3 functional phone booths. The first one has a cost of -0.4 and

0 noise factor. The second one has 0 cost and 0 noise factor. The third one has

0 cost and x ∈ [0.1, 0.3, 0.5] as noise factor across 3 sets of experiments

• booth locations: [4, 1], [0, 1], [3, 0]

• number of decoy booths: 0

53

• booth reinitialization: False

Figure 5.6 illustrates what the instance of this environment would look like. The

golden phone booth corresponds to the costly phone booth while the one with the

dotted red connection cable is the one that has a nonzero noise factor. To investigate

whether our method chooses the best cheap talk channel, we measure the number of

booth visits for each booth during a test episode.

Figure 5.6: Visual illustration of an instance of the Phone Booth Maze environment
with multiple functional phone booths used in experiments in this section.

Figures 5.7, 5.8 and 5.9 showcase booth visits of different booth types across

different algorithms and 3 different noise factors for the noisy booth. The optimal

behavior is to visit the Perfect Booth the most. To begin with, it is obvious that the

Costly Booth is easily avoided by all methods given its cost to use. What is more,

We can see that OBL barely has any booth visits regardless of noise levels, which is

expected given the lack of motivation. We also see that OBL + IR is consistently

visiting the Noisy Booth. This is also within our expectation as the intermediate

reward does not offer any distinction between the Perfect Booth and the Noisy Booth,

so the model would latch onto a closer booth very quickly.

Unlike the previously discussed methods, the mutual information reward does

offer an interpretation of noise or information capacity because a channel with a

higher noise factor would necessarily mean a lower expected mutual information, as

we have already shown in figure 5.2. Therefore, we can see that OBL + MI Reward

has no issue visiting the Perfect Booth until the noise factor becomes too low (i.e.

x = 0.1) for it to distinguish between the Perfect Booth and the Noisy Booth. We

hypothesize longer training time and better hyperparameter tuning would allow the

54

Figure 5.7: Bar plot of booth visits of each phone booth for different algorithms. The
noise factor for the noisy booth is 0.5.

agent to avoid Noisy Booths with low noise factors. This provides strong support

to how our proposed mutual information reward can aid agents in choosing between

cheap talk channels, going for the best one, potentially offering a solution to some

real-life applications mentioned in section 1.1.

However, it does appear that the addition of the mutual information loss makes it

difficult for the agent to distinguish between the Perfect Booth and the Noisy Booth

as the noise factor goes down, especially when x ∈ [0.1, 0.3]. The poor performance

in OBL + MI Loss is expected as it does not appear to have enough motivation to

generate enough booth visitation data to learn to choose the correct one. Yet, the

relatively poor performance of OBL + MI Reward + MI Loss is a bit out of our expec-

tations, especially the mutual information loss’s adverse effect on the performance as

the noise factor decreases. We do not have a conclusive answer for this phenomenon

at the time of writing. We hypothesize that longer training or better hyperparameter

tuning could resolve this issue, or having the mutual information loss simply leads to

the agent converging to the noisy booth quickly before having sufficient exploration.

We aim to concretely resolve this question in our continuing work post-submission.

55

Figure 5.8: Bar plot of booth visits of each phone booth for different algorithms. The
noise factor for the noisy booth is 0.3.

Figure 5.9: Bar plot of booth visits of each phone booth for different algorithms. The
noise factor for the noisy booth is 0.1.

56

5.2.2 Cheap Talk Utilization

In this section, we will look at different algorithms’ performance in solving the full

task of the Phone Booth Maze environment. Specifically, we would like to look at how

our novel problem formulation with our proposed method fair with the baselines as

all baselines we use are not effective on this problem. To assess cheap talk utilization,

we will be using the running task reward of test episodes.

The settings of the environment in this experiment are mostly the same as in

section 5.2.1, except a slight modification to the architecture and action space. Pre-

cisely, instead of having two communicative actions, HINT UP and HINT DOWN,

we only use one communicative action - SEND, with a separate head that produces

a message similar to the architecture in [11]. In this case, when an agent takes the

SEND action, the message head would produce a message to be sent to the receiving

agent if both of them are in connected phone booths. These changes are introduced

because we find that having messages acting as q-values at the same time detrimen-

tally affects the learning of a protocol. In other words, having the outputs for the

HINT UP and HINT DOWN actions acting as q-values for OBL and messages for

DIAL experimentally appears to affect the learning of a protocol. Therefore, we fol-

low the paradigm in previous work in having two heads, one for action-value function

and one for messages [11]. We note that the same discovery approach is used in this

section, so all conclusions drawn from the last section would still hold.

5.2.3 Performance based on running task reward

Figure 5.10 shows the performance of baselines and our proposed methods in solving

the Phone Booth Maze environment. Without a proper protocol between the sender

and the receiver to communicate the goal information, the receiver can only guess by

taking one of the exits randomly. Hence, in this setting, the methods that learn to take

an exit randomly should achieve an expected reward of 0.25 = 1.0×0.5+(−0.5)×0.5.

As we can see, both IQL and OBL achieve the expected reward of guessing randomly.

By combining what we see in this figure and figure 5.4, we can infer that the senders

in these methods do not learn to go to the functional phone booth to send messages,

so no protocols can be formed between the sender and the receiver to communicate.

This leads to the receiver only learning to exit randomly.

On the other hand, the two variants of our proposed method are able to obtain

significantly higher levels of rewards than randomly guessing. OBL + MI + IQL

Util uses IQL during utilization while OBL + MI + DIAL Util uses DIAL during

57

Figure 5.10: Baselines’ and our proposed methods’ performance on the Phone Booth
Maze environment

utilization. Both of them use the same discovery method based on mutual informa-

tion we propose in the first 8000 episodes as indicated by the yellow vertical line.

Qualitatively, we also observe how these methods are able to solve the problem in

which the receiver learns to wait at the functional booth until receiving the message

from the sender, and then it would go to the the correct exit accordingly based on the

protocol learned. What is more, the results show how our novel problem formulation

in decomposing this hard communication and exploration problem helps to make the

problem easier to solve, together with the effectiveness of solving cheap talk discovery

with mutual information maximization.

There are two interesting observations on the results. Firstly, we can see that

the method that uses IQL for utilization performs better than the one that uses

DIAL for utilization. We hypothesize that IQL could be working better than DIAL

because the message space is too small, making it easy for IQL to function well,

as pointed out in [11]. We leave the investigation on this for future work to look

at how these methods scale with the message space and communication difficulty.

Furthermore, noticing the instability and high variance of DIAL despite performing

significantly better than the baselines, we believe a more extensive tuning over all its

hyperparameters would improve the stability which could not be done at this stage

due to time and computing resource constraints.

58

Chapter 6

Conclusion

6.1 Summary

Along with Deep Learning, Multi-Agent Reinforcement Learning has become one of

the frontiers in Artificial Intelligence research. The overarching goal is to develop

agents that work and communicate with each other similar to how humans collab-

orate to accomplish tasks. One key line of research in this area is learning how to

communicate given how essential it is in completing tasks efficiently through infor-

mation exchange. Existing works (e.g. [11] and [63] have shown promising results

by equipping agents with communication channels (i.e., cheap talk channels) to send

messages to each other at every time step. By exchanging messages, agents can

coordinate much more effectively, especially in partially observable settings.

Despite numerous successes, existing work assumes that these communication

channels are already known or built-in among agents and can be used anytime they

want. In this work, we take a step back to a more realistic point of view and ask

the question: Can an agent learn to discover these communication channels before

learning how to use them? In other words, we take away this common assumption to

challenge agents/existing algorithms in finding and using these communication chan-

nels, which we coin as the cheap talk discovery and utilization problem. To the best

of our knowledge, no existing work has addressed this problem before and we find

the capability of an agent to locate where to best communicate to be crucial in many

real-world settings.

In this thesis, we first formulate the cheap talk discovery and utilization problem

based on the Dec-POMDP framework. As there is no existing environment to assess

algorithms on this problem, we then design and implement a highly configurable envi-

ronment, called the Phone Booth Maze. The environment requires agents to discover

59

specific areas in the state space where communication can happen and learn a proto-

col to solve the task. Subsequently, we propose a framework that could potentially

solve this problem. For cheap talk discovery, we propose having a mutual information

reward and a mutual information loss to maximize the mutual information between

an agent’s actions and the other agent’s observations, on top of the base algorithm

OBL, allowing the learning of an optimal grounded policy over communicative ac-

tions. By doing so, agents can discover communication channels as they are places

where actions can influence another agent’s observation. Then, we propose using a

modified version of DIAL for cheap talk utilization to learn how to use the discovered

channels (i.e., forming a protocol among agents).

Experimentally, using our custom environment, we evaluated our proposed method

and various baselines in a series of experiments. We show how our mutual information

maximization approach leads to agents that can effectively discover communication

channels and select the best one among them. The policies learned with the proposed

method are also optimally grounded over communicative actions, ideal for cheap talk

utilization. Then, we further show how our novel problem formulation and the pro-

posed framework have the potential of solving the full problem in its entirety, in which

our agents are able to first discover where to communicate, and then learn a protocol

using the discovered channels.

6.2 Future Work

This thesis can be considered as the very first stride of work on this problem. As

elaborated in 1.1, we see a lot of utility in this line of work with a lot of potential

future research avenues.

The very first future step would be to conduct further investigations on our pro-

posed framework. Specifically, it would be helpful to conduct a thorough investigation

and hyperparamter tuning on different parts of the framework. This would aid us

in isolating the causes of instability and errors to make the framework more robust.

Examples include trying out different ways of updating the replay buffers for DIAL.

With a more robust proposed framework, there remains a lot of unexplored ter-

ritories and questions within the proposed method itself. Here is a non-exhaustive

list:

• Can the framework still function well when the belief model is learned?

60

• The framework assumes the knowledge of the time when agents are at the

channels when performing DIAL. Can we get rid of this assumption using the

mutual information reward?

• Are there better approaches than mutual information maximization? Can we

use some pseudomeasure or approximation of mutual information that does not

require access to the model of the environment?

• As covered early on in Figure 1.1, there are 3 learning stages. During the

discovery stage, we are employing reward shaping to discover the channels, so

the value function of the environment with reward shaping is learned which is

different from the value function of the task reward. Therefore, there might

be issues of interference or unlearning as learning happens in the 2nd and 3rd

stages. More modular architecture can be explored to retain what has been

learned during training with the dynamic triggering of each module during

execution.

• Investigations on the mutual information loss anomaly observed in section 5.2.1.4

• Can our framework handle nonstationarity? E.g., phone booths are reinitialized

in every episode

• Working under the centralized training and decentralized execution setting, we

can explore how the access to extra state information during centralized training

could help discover and utilize cheap talk channels

• Benchmarking different cheap talk utilization algorithms by varying factors like

channel noise and channel capacity

Regarding environments, there are also many potential extensions. For our Phone

Booth Maze environment, there are many scenarios one can explore beyond the cur-

rent setting. For instance, the environment can be modified so that the sender also

has to escape from a door, meaning the receiver would have to send messages to

the sender. Another example would be introducing multiple booths in the receiver’s

room to increase its difficulty. On the code level, it would be ideal to perform proper

refactoring on our codebase so that we can open-source a user-friendly software for

practitioners to test their algorithms on our environment. On the other hand, it is

also worth looking into higher dimensional and more complex environments beyond

GirdWorlds, which would be helpful in assessing different algorithms’ capability in

generalizing to harder environments on this problem.

61

6.3 Critical Evaluation

This section covers some of the limitations of our work in our methodology and exper-

imental results that would strengthen our discussion. Our proposed method and its

results do rely on access to the environment model and a perfect belief model. These

can be difficult to obtain in more complex problems, which we leave it as future work

to explore these components interactions when they are learned. Additionally, since

our method involves reward shaping, it can be sensitive to the overall task reward and

would have to be manually scaled accordingly for different tasks. Moreover, not much

consideration was paid to the choice of representation (e.g., flattened representation

vs channel-based tensor), which could have affected the results too.

In terms of our experimental setup and results, there are things that could not be

done due to limited time and computing resources, which would improve the overall

quality and robustness of our results and conclusion. To begin with, more runs should

be performed over more random seeds to strengthen the findings. Furthermore, a more

thorough and systematic hyperparameters tuning process should be done, especially

for our proposed method with the introduction of new hyperparameters, so our results

can be more robustly comparable. This also applies to our baselines in which aspects

like the exploration policy could have been better tuned and tested. More importantly,

given the complexity and interconnectedness of our proposed framework, more unit

tests should have been created to aid debugging and analysis.

6.4 Relation to Materials Studied in the MSc Pro-

gram

Several courses I took during the MSc Program have offered a solid and relevant foun-

dation to pursue the topics covered in this thesis. The Computational Game Theory

course was very helpful in laying the groundwork and mindset for me to think in terms

of the multi-agent setting, despite not directly covering RL or MARL. More impor-

tantly, many of the concepts covered in the course have been widely studied and

adopted in the MARL setting which has helped significantly when reading MARL

papers. Furthermore, the Advanced Topics in Machine Learning and Bayesian Sta-

tistical Probabilistic Programming have also offered me a solid probability foundation

in machine learning, which is crucial in understanding aspects in MARL like belief

modeling. Last but not least, the Computers in Society and Topics in Computational

62

Biology courses provided me with sufficient opportunities to practice research writ-

ing with solid feedback, preparing me to write this thesis in a more professional and

research-oriented manner.

6.5 Personal Developments and Challenges

Throughout this project, I have learned a lot and have encountered many challenges.

This section aims to summarize these learning experiences and hurdles.

To begin with, before working on this project, I only had experience working on

RL projects with one single agent interacting in an environment. Venturing into

MARL was indubitably a challenge given all the different formalism and sets of con-

siderations. After some extensive reading in the beginning, with some incredible

recommendations on papers and survey papers by my supervisors, I was able to es-

tablish a solid understanding and coverage of the field, which I am excited to further

pursue as a research focus after this program.

Furthermore, as this project tries to tackle a problem that has not been investi-

gated before, a lot of components have to be developed from scratch including the

environment and some of the algorithms. Most of them were coded from the ground

up except for a few more foundational libraries like PyTorch [46] and Numpy. This

was challenging as it took more time than projects that built on top of a plethora

of existing work. Instead of testing our proposed algorithms on an existing dataset

right away, we had to start with designing a software that could test algorithms on

our problem. It was a challenge and a fruitful learning opportunity for me to better

my time management skills, especially in prioritizing tasks and assessing progress.

Besides, some of the algorithms like OBL are some of the most recent work in the

field and have no off-the-shelf codebase to take reference from. Thus, these com-

ponents require diligent attempts in reproducing the algorithms solely based on the

papers. Luckily, with close guidance from my supervisors, I was able to reproduce

most of these algorithms in our custom environment. Implementing research papers

was surely not easy and the process has nurtured my skills in dissecting research

papers in order to gain full understanding and identify details that could be crucial

in reproducing the algorithms.

What’s more, the entire research process has provided me with essential lessons

that I am certain will be advantageous throughout my career. Towards the beginning

and the middle of the project, whenever things are not working, I used to spend hours

going through the codebase again and again to try to identify errors. An important

63

lesson I have learned from my supervisors is to always start simple in order to isolate

the causes of problems. They were able to come up with settings to experiment with

that can eliminate factors of concerns in an iterative manner. Later on, I started to

acquire that mindset which allowed me to fix things and identify the source of issues

much quicker. I hope to further nurture this skill moving forward.

Last but not least, having able to go through the rigorous process of research

with experienced researchers has further consolidated my foundation in conducting

scientific research, from asking the right research questions to explaining complex

technical ideas in a reader-friendly manner. I am wholeheartedly grateful for my

supervisors’ time and effort in mentoring me throughout the process.

64

Bibliography

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,

et al. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16), pages

265–283, 2016.

[2] Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke van Hoof, and Doina Pre-

cup. A survey of exploration methods in reinforcement learning. arXiv preprint

arXiv:2109.00157, 2021.

[3] Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre

Côté, and R Devon Hjelm. Unsupervised state representation learning in atari.

arXiv preprint arXiv:1906.08226, 2019.

[4] Andrea Apicella, Francesco Donnarumma, Francesco Isgrò, and Roberto Prevete.

A survey on modern trainable activation functions. Neural Networks, 2021.

[5] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey

of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 38(2):156–172, 2008.

[6] Andy Cahill. Catastrophic forgetting in reinforcement-learning environments.

PhD thesis, University of Otago, 2011.

[7] Kris Cao, Angeliki Lazaridou, Marc Lanctot, Joel Z Leibo, Karl Tuyls, and

Stephen Clark. Emergent communication through negotiation. arXiv preprint

arXiv:1804.03980, 2018.

[8] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh,

Mike Rabbat, and Joelle Pineau. Tarmac: Targeted multi-agent communication.

In International Conference on Machine Learning, pages 1538–1546. PMLR,

2019.

65

[9] Yali Du, Lei Han, Meng Fang, Ji Liu, Tianhong Dai, and Dacheng Tao. Liir:

Learning individual intrinsic reward in multi-agent reinforcement learning. 2019.

[10] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and

Shimon Whiteson. Counterfactual multi-agent policy gradients. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[11] Jakob N Foerster, Yannis M Assael, Nando De Freitas, and Shimon Whiteson.

Learning to communicate with deep multi-agent reinforcement learning. arXiv

preprint arXiv:1605.06676, 2016.

[12] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, and

Joelle Pineau. An introduction to deep reinforcement learning. arXiv preprint

arXiv:1811.12560, 2018.

[13] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Proceedings of the thirteenth international con-

ference on artificial intelligence and statistics, pages 249–256. JMLR Workshop

and Conference Proceedings, 2010.

[14] Jordi Grau-Moya, Felix Leibfried, and Peter Vrancx. Soft q-learning with mutual-

information regularization. In International conference on learning representa-

tions, 2018.

[15] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforce-

ment learning for robotic manipulation with asynchronous off-policy updates. In

2017 IEEE international conference on robotics and automation (ICRA), pages

3389–3396. IEEE, 2017.

[16] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-

agent control using deep reinforcement learning. In International Conference on

Autonomous Agents and Multiagent Systems, pages 66–83. Springer, 2017.

[17] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially

observable mdps. In 2015 aaai fall symposium series, 2015.

[18] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. A survey and cri-

tique of multiagent deep reinforcement learning. Autonomous Agents and Multi-

Agent Systems, 33(6):750–797, 2019.

66

[19] Sepp Hochreiter and Jürgen Schmidhuber. Lstm can solve hard long time lag

problems. Advances in neural information processing systems, pages 473–479,

1997.

[20] Hengyuan Hu, Adam Lerer, Noam Brown, and Jakob Foerster. Learned belief

search: Efficiently improving policies in partially observable settings. 2021.

[21] Hengyuan Hu, Adam Lerer, Brandon Cui, Luis Pineda, David Wu, Noam Brown,

and Jakob Foerster. Off-belief learning. arXiv preprint arXiv:2103.04000, 2021.

[22] Alexander Iversen, Nicholas K Taylor, and Keith E Brown. Classification and

verification through the combination of the multi-layer perceptron and auto-

association neural networks. In Proceedings. 2005 IEEE International Joint

Conference on Neural Networks, 2005., volume 2, pages 1166–1171. IEEE, 2005.

[23] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro

Ortega, DJ Strouse, Joel Z Leibo, and Nando De Freitas. Social influence as

intrinsic motivation for multi-agent deep reinforcement learning. In International

Conference on Machine Learning, pages 3040–3049. PMLR, 2019.

[24] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning

and acting in partially observable stochastic domains. Artificial intelligence,

101(1-2):99–134, 1998.

[25] Sanyam Kapoor. Multi-agent reinforcement learning: A report on challenges and

approaches. arXiv preprint arXiv:1807.09427, 2018.

[26] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dab-

ney. Recurrent experience replay in distributed reinforcement learning. In Inter-

national conference on learning representations, 2018.

[27] Woojun Kim, Myungsik Cho, and Youngchul Sung. Message-dropout: An effi-

cient training method for multi-agent deep reinforcement learning. In Proceedings

of the AAAI conference on artificial intelligence, volume 33, pages 6079–6086,

2019.

[28] Woojun Kim, Whiyoung Jung, Myungsik Cho, and Youngchul Sung. A maximum

mutual information framework for multi-agent reinforcement learning. arXiv

preprint arXiv:2006.02732, 2020.

67

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[30] Angeliki Lazaridou, Karl Moritz Hermann, Karl Tuyls, and Stephen Clark. Emer-

gence of linguistic communication from referential games with symbolic and pixel

input. arXiv preprint arXiv:1804.03984, 2018.

[31] Yuanlong Li, Yonggang Wen, Dacheng Tao, and Kyle Guan. Transforming cool-

ing optimization for green data center via deep reinforcement learning. IEEE

transactions on cybernetics, 50(5):2002–2013, 2019.

[32] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[33] Long-Ji Lin. Reinforcement learning for robots using neural networks. Carnegie

Mellon University, 1992.

[34] Laëtitia Matignon, Laurent Jeanpierre, and Abdel-Illah Mouaddib. Coordinated

multi-robot exploration under communication constraints using decentralized

markov decision processes. In Twenty-sixth AAAI conference on artificial in-

telligence, 2012.

[35] Roger McFarlane. A survey of exploration strategies in reinforcement learning.

McGill University, 2018.

[36] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim

Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade

Nazi, et al. A graph placement methodology for fast chip design. Nature,

594(7862):207–212, 2021.

[37] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[38] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-

ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,

Georg Ostrovski, et al. Human-level control through deep reinforcement learning.

nature, 518(7540):529–533, 2015.

68

[39] Thomas M Moerland, Joost Broekens, and Catholijn M Jonker. Model-based

reinforcement learning: A survey. arXiv preprint arXiv:2006.16712, 2020.

[40] Shakir Mohamed and Danilo Jimenez Rezende. Variational information max-

imisation for intrinsically motivated reinforcement learning. arXiv preprint

arXiv:1509.08731, 2015.

[41] Andrew Ng. Cs229 lecture notes. CS229 Lecture notes, 1(1):1–3, 2000.

[42] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward

transformations: Theory and application to reward shaping. In Icml, volume 99,

pages 278–287, 1999.

[43] Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Deep reinforce-

ment learning for multiagent systems: A review of challenges, solutions, and

applications. IEEE transactions on cybernetics, 50(9):3826–3839, 2020.

[44] Christopher Olah. Understanding lstm networks. 2015.

[45] Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized

POMDPs. Springer, 2016.

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

et al. Pytorch: An imperative style, high-performance deep learning library.

Advances in neural information processing systems, 32:8026–8037, 2019.

[47] Peng Peng, Ying Wen, Yaodong Yang, Quan Yuan, Zhenkun Tang, Haitao

Long, and Jun Wang. Multiagent bidirectionally-coordinated nets: Emergence

of human-level coordination in learning to play starcraft combat games. arXiv

preprint arXiv:1703.10069, 2017.

[48] Emanuele Pesce and Giovanni Montana. Improving coordination in multi-

agent deep reinforcement learning through memory-driven communication. arXiv

preprint arXiv:1901.03887, 2019.

[49] Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based rein-

forcement learning: Applications on robotics. Journal of Intelligent & Robotic

Systems, 86(2):153–173, 2017.

69

[50] Aniruddh Raghu, Matthieu Komorowski, Imran Ahmed, Leo Celi, Peter

Szolovits, and Marzyeh Ghassemi. Deep reinforcement learning for sepsis treat-

ment. arXiv preprint arXiv:1711.09602, 2017.

[51] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar,

Jakob Foerster, and Shimon Whiteson. Qmix: Monotonic value function factori-

sation for deep multi-agent reinforcement learning. In International Conference

on Machine Learning, pages 4295–4304. PMLR, 2018.

[52] Robert A Rescorla. Pavlovian conditioning: It’s not what you think it is. Amer-

ican psychologist, 43(3):151, 1988.

[53] Frank Rosenblatt. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65(6):386, 1958.

[54] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized

experience replay. arXiv preprint arXiv:1511.05952, 2015.

[55] Christian Schroeder de Witt, Jakob Foerster, Gregory Farquhar, Philip Torr,

Wendelin Boehmer, and Shimon Whiteson. Multi-agent common knowledge

reinforcement learning. Advances in Neural Information Processing Systems,

32:9927–9939, 2019.

[56] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[57] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent,

reinforcement learning for autonomous driving. arXiv preprint arXiv:1610.03295,

2016.

[58] Claude Elwood Shannon. A mathematical theory of communication. ACM SIG-

MOBILE mobile computing and communications review, 5(1):3–55, 2001.

[59] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks

and tree search. nature, 529(7587):484–489, 2016.

[60] Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar. Learning when to

communicate at scale in multiagent cooperative and competitive tasks. arXiv

preprint arXiv:1812.09755, 2018.

70

[61] Samuel Sokota, Christian Schroeder de Witt, Maximilian Igl, Luisa Zintgraf,

Philip Torr, Shimon Whiteson, and Jakob Foerster. Implicit communication as

minimum entropy coupling. arXiv preprint arXiv:2107.08295, 2021.

[62] Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee. Despot: Online pomdp

planning with regularization. Advances in neural information processing systems,

26:1772–1780, 2013.

[63] Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communica-

tion with backpropagation. Advances in neural information processing systems,

29:2244–2252, 2016.

[64] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-

cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo,

Karl Tuyls, et al. Value-decomposition networks for cooperative multi-agent

learning. arXiv preprint arXiv:1706.05296, 2017.

[65] Richard S Sutton. Learning to predict by the methods of temporal differences.

Machine learning, 3(1):9–44, 1988.

[66] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

[67] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative

agents. In Proceedings of the tenth international conference on machine learning,

pages 330–337, 1993.

[68] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan,

John Schulman, Filip De Turck, and Pieter Abbeel. # exploration: A study of

count-based exploration for deep reinforcement learning. In 31st Conference on

Neural Information Processing Systems (NIPS), volume 30, pages 1–18, 2017.

[69] Tonghan Wang, Jianhao Wang, Yi Wu, and Chongjie Zhang. Influence-based

multi-agent exploration. arXiv preprint arXiv:1910.05512, 2019.

[70] Xin Wang, Yi Qin, Yi Wang, Sheng Xiang, and Haizhou Chen. Reltanh: An

activation function with vanishing gradient resistance for sae-based dnns and its

application to rotating machinery fault diagnosis. Neurocomputing, 363:88–98,

2019.

71

[71] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando

Freitas. Dueling network architectures for deep reinforcement learning. In Inter-

national conference on machine learning, pages 1995–2003. PMLR, 2016.

[72] Erik Zawadzki, Asher Lipson, and Kevin Leyton-Brown. Empirically evaluating

multiagent learning algorithms. arXiv preprint arXiv:1401.8074, 2014.

[73] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maxi-

mum entropy inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438.

Chicago, IL, USA, 2008.

72

Appendix A

Appendix

A.1 Deep Neural Networks

A.1.1 Perceptron

Figure A.1: A diagram of a perceptron

The basic building block of a neural network is a perceptron. It was first proposed

by [53], modeled after biological neurons in animal brains. As shown in Figure A.1,

it has multiple inputs and one output. The output of a perceptron is the linear

combination of the inputs weighted by the weights with some nonlinear function

applied to it:

o = f(
∑
i∈N

wixi) (A.1)

73

where:

xi: inputs

wi: corresponding weight to each input

f: non-linear function

o: output

We note that a bias term b is commonly added to the linear combination sum in the

machine learning literature as follows:

Figure A.2: Examples of activation functions taken from [4]

o = f(
∑
i∈N

wixi + b) (A.2)

Here, we include the bias term as part of the weight by adding it as part of the

input vector with its input being 1 always. The non-linearity f corresponds to the

activation function. The common activation functions include sigmoid, tanh, and

rectified linear unit (ReLU). These activation functions are selected by the network

designers and are often application-specific. The introduction of such non-linearity is

74

arguably a major key to the power of neural networks in approximating complex and

non-linear functions. Each of them has different properties. For instance, ReLU is

known to be more resistant to the problem of vanishing gradients [70]. Some common

activation functions are illustrated in figure A.2.

One perceptron may appear simple. But a perceptron can already be used as a linear

classifier for binary classification. Assuming that we have a dataset:

D = (xi, yi)i (A.3)

where:

xi: an input vector of dimension RN

yi: class to which xi belongs to, between 0, 1

Figure A.3: Example of a perceptron being a classifier, taken from [41]

The probability of an input vector xi belong to class 1 can then be written as:

P (y = 1|x,w) = f(
∑
i∈N

wixi) (A.4)

This can solve classification problems with samples that are linearly separable. An

example of this is given in Figure A.3, where we can see a linear decision boundary.

A.1.2 Multilayer perceptron (MLP)

Arranging perceptrons together into different layers gives us a multilayer perceptron

(MLP). See figure for an illustration. By stacking them into layers, the input of an

MLP is the input to the first layer of perceptrons, while the inputs to the next layer

75

would be outputs of the first layer, and so on. Therefore, outputs of each layer are

computed sequentially starting from the first layer, a process commonly known as

feedforwarding, until the final layer is reached. The output of each layer is naturally

a vector given that it is the output of every perceptron in the previous layer.

Figure A.4: Diagram of a multilayer perceptron

For illustration, considering the i-th layer of an MLP, we can put all the weights of

the perceptrons in that layer as rows in a matrix, denoted as Wi. Then, based on

section A.1.1, the output of the i-th layer can be expressed as:

o = f(Wioi−1) (A.5)

where oi−1 corresponds to the output of the last layer or the input to the MLP if it

is the first layer (i.e. i = 1). Note that we use bold symbols to indicate the use of

vectors or matrices.

MLP can be adapted to most, if not all, machine learning tasks like classification,

regression, and reinforcement learning. Differences would be the targets yi one tries

to predict and the nonlinearity functions used, especially in the final layer. For

instance, softmax is often used when the outputs of the final layer need to sum to 1

to have a probability interpretation. on the other hand, tanh is often used for training

reinforcement learning agents with a continuous action space which limits the outputs

to be in the interval of [-1, 1], corresponding normalized range of actions.

76

Figure A.5: Example of an MLP being a non-linear classifier, taken from [22]. A and
B are class samples while X denotes non-class samples

This arrangement of perceptrons has led to the necessary capacity to learn complex

and nonlinear functions Figure A.5 shows how an MLP can learn a non-linear decision

boundary. The success of MLP serves as a foundation to field-changing innovations

like convolutional neural networks and recurrent neural networks that are crucial to

most AI applications nowadays.

A.1.3 Training a neural network

To train a neural network, for the sake of simplicity, a fully connected neural network/

an MLP, we can apply the same procedure irrespective of the task. Assuming we have

a regression dataset in the same form as equation A.3, we need a cost function to

minimize in order to improve the model’s prediction. For a simple illustration, here

we use the squared loss:

L =
1

2

∑
i

(yi − ŷi)2 (A.6)

where:

L: loss function

ŷi: output of the neural network for the i-th data sample

Gradient-based optimization methods are often used to minimize a loss function like

the one above. One of the most widely used approaches is stochastic gradient descent

(SGD). The idea is to compute the gradient of the loss function with respect to every

parameter of the network. Then, the parameters are updated in the direction opposite

of the gradient to lower the loss:

77

Wi = Wi − α(
∂L

∂Wi

)T (A.7)

Figure A.6: Backpropagation through one layer. Blue arrows, red arrows, and green
arrows are forward pass, backpropagation, and update respectively

where α is the learning rate. For each update, the gradient of each parameter in the

network has to be computed using a method called backpropagation.

Backpropagation computes these gradients using the chain rule. For example, using

the output of layer i in equation A.5, we can express the gradient with respect to the

weight - ∂L
∂Wi

as:

∂L

∂Wi

=
∂L

∂oi

∂oi
∂Wi

=
∂L

∂oi

f ′(Wioi−1)oTi−1 (A.8)

To further compute gradients of the layer before, we would need ∂L
∂oi−1

that can be

expressed as:

∂L

∂oi−1

=
∂L

∂oi

∂oi
∂oi−1

=
∂L

∂oi

f ′(Wioi−1)(Wi)
T (A.9)

For this to work, we need the gradient ∂L
∂oi

for the final layer. Then, for a data sample

i we have:

Li =
1

2
(yi − oF)2 (A.10)

where:

78

F: number of layers

oF : output of the final layer

Immediately we have:

∂L

∂oF

= oF − yi (A.11)

Using ∂L
∂oi

= ∂L
∂oF

, both ∂L
∂Wi

and ∂L
∂oi

can be computed. This can be repeated from the

last layer to the very first layer by passing the corresponding gradient terms backward.

Figure A.6 shows how backpropagation is performed for one layer in terms of how the

gradients are passed. Modern deep learning libraries like Tensorflow [1] and PyTorch

[46] have automated this process so practitioners no longer have to worry about these

computations.

By combining all these steps, the backpropagation can be put into the form of an

algorithm as follows:

Algorithm 4: Backpropagation pseudocode

1 Compute ∂L
∂oF

2 for i = F, 1 do
3

∂L
∂Wi
← ∂L

∂oi
f ′(Wioi−1)oTi−1

4
∂L

∂oi−1
= ∂L

∂oi
f ′(Wioi−1)(Wi)

T

5 Wi ← Wi − α(∂L
∂Wi

)

A.1.4 Recurrent neural network

Recurrent neural network (RNN) is a type of neural network that specializes in pro-

cessing sequential data. It has shown incredible promise in fields like natural language

processing. They are essentially neural networks with loops to allow information of

the past to be remembered as a sequence is being processed. This is done by having

an additional input, called the hidden state ht, in addition to the input data, which

provides you a memory or context of the recent past. t here corresponds to the time

step. An output yt is also produced in every time step. A simple way to visualize it is

with the application of machine translation. An input of word is given in every time

step which the model spits out a translated word while ht is used to provide context

to the model of what has been observed so far. Figure A.7 shows a visual depiction

of an RNN with an unrolled version to demonstrate how the self-loop works.

79

Figure A.7: Visual illustration of an RNN and its unrolled version

W hh, W hx and W y are weights that are shared temporally across time steps. They

are used to update the hidden state and produce output as follows:

ht = f(W hhht−1 + W hxxt) (A.12)

yt = softmax(W yht) (A.13)

To learn an RNN, a variant of backpropagation is used, known as backpropagation

through time (BPTT). The approach is essentially the same as backpropagation,

except the gradients are flowing through the unrolled version of the RNN based on a

loss function defined on the outputs.

In addition to being able to take historical information into account, such structure

allows RNN to process data of arbitrarily any length with the network size not in-

creasing with the size of the input. However, a vanilla RNN does suffer certain issues.

The most prominent ones are exploding gradients and vanishing gradients. This hap-

pens due to the difficulty in capturing long-term dependencies as the multiplicative

gradients can be exponentially increasing or decreasing with respect to the number

of layers or the number of time steps in the rollout. A variant of RNN, named Long

Short Term Memory networks (LSTM) was proposed to tackle this issue [19]. Given

its robustness and is widely used in the context of RL too, LSTM is the choice of

RNN for this work. The key to LSTM is the introduction of a cell state which cor-

responds to longer term memory that updates more slowly while the hidden state

serves as shorter term memory or working memory. The cell state is updated by 3

functions called gates, namely, the forget gate, the input gate, and the output gate.

They determine what to forget, what to include, and what to output, respectively.

Without going much into the details, each iteration performs these operations:

80

ft = σ(W f · [ht−1, xt]) (A.14)

it = σ(W i · [ht−1, xt]) (A.15)

Figure A.8: Graphical illustration of an LSTM cell taken from [44]

Ĉt = tanh(WC · [ht−1, xt]) (A.16)

Ct = ft ∗ Ct−1 + it ∗ Ĉt (A.17)

ot = σ(W o[ht−1, xt]) (A.18)

ht = ot ∗ tanh(Ct) (A.19)

As you can see, each gate has its own weight matrix and the cell state is updated

based on the forget and input gate in removing old information and adding new

information. Figure A.8 shows a graphical representation of an LSTM network.

A.2 Hyperparameters Setting

This section covers details in setting hyperparameters for various methods used in this

work. They are covered in two separate sections depending on whether a parameter

is common to all used methods or not.

81

Figure A.9: Hyperparameter sweep results using IQL, the labels on the legend are
named based on the ”method decimals target network update frequency” format

A.2.1 Common parameters

To determine the best parameters that are common to all the methods used, we

performed a hyparameter sweep over some key common parameters. Specifically, the

search was performed on the learning rate and target network update frequency in the

lists of [0.01, 0.001, 0.0001, 0.00001] and [50, 100, 200, 500]. The results are averaged

over 3 random seeds, each trained for 25000 episodes. Figure A.9 shows the results

of the sweep and we can see that the best set of parameters for learning rate and

target network update frequency are 0.0001 and 100, respectively. Other common

parameters are set to values in table A.2.1.

Hyperparameter Value
Discount Factor γ 0.99
Batch Size 32
Replay Buffer Size 10000
Temperature 1.0
Non-Linearity ReLU

A.2.2 Method-specific parameters

Method-specific parameters are set to values in table A.2.2.

82

IQL IQL + Intermediate Reward OBL OBL + Mutual Information Maximization
Starting ε 1.0 1.0 N/A N/A
ε Decay Step 0.00001 0.00001 N/A N/A
Minimum ε 0.1 0.1 N/A N/A
Initial Exploration Step 1000 1000 1000 1000
Intermediate Reward N/A 1.0 N/A N/A
N-step Reward N/A N/A 2 2
α Entropy Factor N/A N/A N/A 0.0
β Mutual Information Reward Factor N/A N/A N/A 2.0
κ Mutual Information Loss Factor N/A N/A N/A 1.0

A.3 Results Figures without Smoothing

Figure A.10: Baselines’ performance on cheap talk discovery without standard errors
and smoothing, IR stands for Intermediate Reward. Corresponding section: 5.2.1.1

83

Figure A.11: Baselines’ performance on cheap talk discovery with standard errors
and without smoothing, IR stands for Intermediate Reward. Corresponding section:
5.2.1.1

Figure A.12: Baselines’ and our proposed approaches’ performance on cheap talk
discovery without standard errors and smoothing, MI stands for Mutual Information.
Corresponding section: 5.2.1.2

84

Figure A.13: Baselines’ and our proposed approaches’ performance on cheap talk
discovery with standard errors and without smoothing, MI stands for Mutual Infor-
mation. Corresponding section: 5.2.1.2

85

